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ABSTRACT

A six degree of freedom manipulator, a PUMA 560, is calibrated

using three different measurement systems in order to improve the

accuracy of the manipulator. Closed loop kinematic chain modeling

theory is presented. Variations in the models for each calibration

method are presented. A simulation study is conducted to determine

feasibility of the proposed methods. Experimental data is obtained

and the actual calibration performed. A comparative analysis

between both simulation and experiment and between measurement

systems is performed. Various aspects regarding measurement system

modelling are discussed. The calibrated kinematic parameters are

presented as results.
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I. INTRODUCTION

There are two main objectives that are addressed in this

thesis. The first objective addresses development of practical

manipulator calibration methods. A number of different devices

and techniques have been employed to calibrate manipulators.

However, most methods involve highly sophisticated, delicate

and expensive measurement systems which are well suited for

laboratory work but are not practical in an industrial

environment. The second objective addresses problems

associated with modelling measurement systems within closed

'-op kinematic chains.

The goal of calibration is to improve the accuracy of the

manipulator. Accuracy, in the sense used here, is the ability

of a manipulator to achieve a commanded position and

orientation, pose for short, of its end effector. The end

effector pose is a function of both fixed geometric properties

of the robot, such as link lengths, and variable geometric

properties, such as angular displacement of a rotary joint.

The kinematic model is developed from both the fixed and

variable geometric properties and in a qualitative sense,

these models are both well understood and well defined.

However, errors between the pose predicted by a model and the

pose achieved by a typical manipulator have been shown by
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experiment to be 10 mm or more [Ref 1]. These errors are due,

in most part, to differences between the design or nominal

values of the geometric properties of the manipulator and the

actual manufactured values.

Another measure of a manipulator's performance is its

repeatability. Repeatability is the ability of a manipulator

to achieve an identical pose each time it is commanded to a

specific pose. Current experimentation shows that manipulators

have a repeatability on the order of 0.3 mm [Ref 2].

Therefore, a measure of the success of calibration is a model

with an accuracy which approaches the manipulator's

repeatability.

There are four basic steps in the calibration process

[Ref. 3] and these steps are described as follows:

- A closed chain kinematic model of the manipulator and
measurement system is developed. During this process,
identifiable parameters are determined and the measured
quantity or quantities are specified. A set of error
functions are derived from the difference in the measured
quantities and the quantities predicted by the model.
Nominal parameter values are provided by manipulator
manufacturing specifications, measurement system
specifications and the location of the measurement system.

- Next, experimental measurements are taken. These
measurements are a function of the actual parameter
values. Corresponding joint variable data is incorporated
into the measurement set.

- Identification of the parameters is performed utilizing
the experimental data. This process consists of
systematically adjusting the nominal parameters until the
model predictions match the experimental data and hence
the error functions become zero.
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- The final step involves incorporating the identified
parameters into the software used to control the
manipulator.

The first three steps were performed on a PUMA 560 six degree

of freedom manipulator arm utilizing three different

measurement systems. The first of these methods corresponds to

a laboratory method and uses a Coordinate Measuring Machine

for full pose measurement. This highly accurate method

provides a benchmark for the other two methods. Although step

four of the process is not performed, computer simulation of

the process is conducted to quantify the success of the

calibration method.

Although standardized and reliable approaches to kinematic

modelling of manipulators exist, closed chain models

incorporating measurement systems for calibration are less

well understood. Difficulties arise from the issue of

identifiability of parameters. This problem was studied in

detail with the intent of producing a standardized approach

which would eliminate the ambiguity often encountered. Due in

part to the unlimited number and type of measurement systems

available, no one independant method is possible. However, a

systematic approach to the problem which alleviates most of

the difficulties is proposed. Several case studies are

presented which not only illustrate this approach, but

emphasize some of the subtleties encountered in modelling

measurement systems.

3



II. THEORY

A. CLOSED LOOP KINEMATIC CHAIN MODELING

1. General Coordinate System Transformations

A large class of manipulators can be thought of as a

series of links connected by either rotary or prismatic

joints. Typical kinematic models consist of fixed coordinate

frames attached to each of the links and a set of

transformation equations between these coordinate frames. This

section will develop generalized coordinate frame

transformations. The following sections will then address

standardized transformations followed by a development of the

kinematic model for the PUMA-560. The following conventions

will be used throughout this document:

- Bold lower case letters will refer to vectors. A preceding
superscript refers to the frame the vector is associated
with. A subscript identifies the frame in which the
coordinates of the vector are referenced.

- Bold upper case letters will refer to matrices.

- Upper case letters, excluding F, correspond to points.
Preceding superscripts and subscripts have an identical
meaning as defined for vectors.

- Coordinate frames will be denoted by F' where the
superscript refers to an assigned number or designation.

- Double subscripted lower case letters will usually refer
to a vector or point of the same letter. The first
subscript refers to the component of the vector or
coordinate of the point and the second subscript refers to
the frame to which it is referenced.

4



Consider the coincident coordinate frames of Figure 1 in

which the y and z axis have been rotated an angle * about the

x axis. First, the io, jo and k, unit vectors in the nonrotated

frame will be described with respect to the rotated coordinate

frame unit vectors i1 , j, and k,. This will then provide a

method of describing the coordinates of point P, with

coordinates p.., p,. and p.., given the coordinates of point P,

P.1, p,., and p,,, with respect to the rotated axis. Clearly,

rotation about the x axis does not alter the i0 unit vector or

the x component of P. Consequently, this problem can be

reduced to a planar analysis by projection onto the y-z plane.

/N

0

Figure 1. Effect of Rotation of a Coincident Coordinate Frame

About the x Axis

Figure 2 illustrates this projection. Recalling that

io and i, are identical and noting the geometry of Figure 2,

i0, jo and ko in terms of i,, j, and k, are given by Equation 1.

5



10 = il
J0 = cos@rJl - sink (1)
k 0 = sin4Jl + costk

Rewriting Equation 1 in matrix form results in the following

expression.

-1 0 C .{ 0 cos4 -sir.* j (2)
_ 10 sini cos* k

Equation 2 can now be used to transform the coordinates of

point P with respect to the rotated axis into coordinates in

the nonrotated coordinate system by substituting the

coordinates of point P for the unit vectors as shown in

Equation 3.

PXC'" 0 0 ]PXi
0 cos, -(3)

pz L0 sinfi cosq ]

Summarizing, the above 3x3 matrix can be interpreted in two

ways. First, the matrix columns describe the orientation of

the rotated frame with respect to the nonrotated frame. For

example, the column 2 elements indicate that the rotated y

axis, which is described by unit vector j,, has direction

J. = 010 + cosiJ 0 + sin*k0  (4)

Rewriting Equation 4,

J0 = 0i + cos jl + cos(90-W)k (5)

and noting from Figure 2 that the angle 90- is the angle

6



between the z, and y, axis, then it can be seen that the column

components are the familiar direction cosines. Secondly, the

matrix can be thought of as a coordinate transformation matrix

in which coordinates of points in one frame can be

"transformed" into coordinates in a second frame as

illustrated in Equation 3. These two interpretations of the

3x3 matrix transformation matrix will hold for all

transformation matrices to follow.

zo

Z' y,

/ \
/\

Figure 2. Planar View of a Coordinate Frame Rotated About its
X Axis

If the rotated coordinate frame is now rotated about

the y, axis an angle 8, then in a similar manner to the

preceding analysis, the problem reduces to analysis in the x,-

z, plane. Referring to Figure 3, the i,, j, and k, unit vectors

in terms of the rotated axis x2 , y, and z2 are given by

Equation 6. These equations are again rewritten in matrix form

as given in Equation 7.

7



I = COSi 2 + sinOk-

-12= (6)
k i = -sinEi 2 + cosOk 2

11 cos;O 0 Sir-Ol I1
= 1 (7)

k -sinO o cosf~j

Pre-multiplying both sides of Equation 7 by the matrix in

Equation 2 as shown in Equation 8, will result in a

transformation between the original coordinate frame and the

twice rotated coordinate frame.

=s ! 0 [ 0 sinOfi (8)

= cos 0 1 0 (8)
iL 0 sin* cosl j -sinO 0 cosO [k.

The preceding analysis demonstrates a valuable property of

transformation matrices. Further rotations of a coordinate

frame can be referenced to the original coordinate frame by

post multiplying any previous transformation matrices by the

transformation matrix that describes the next rotation.

A development similar to that leading to Equations 2

and 7 for a rotation about the z axis by angle 0 results in

the following transformation matrix R,.

R s= !sin s4) co' sno0 (9)

0 0 0)

In addition to rotation of a coordinate frame about

its axis, translation of the frame must be accounted for.

Consider the coordinate frame with origin at point P in Figure

8



//e

Figure 3. Planar View of the Effect of Rotating a Coordinate
Frame About its Y Axis

4. Let R be the transformation matrix with elements r,, that

corresponds to rotation of a coordinate frame with origin at

P and axis originally aligned with the coordinate frame at 0.

A point Q with coordinates q,,, q,1 and q, with respect to the

rotated coordinate frame can be expressed in coordinates with

respect to point 0 by Equation 10.

q r0 11 r 12  r13 q.,, P'

, = Ir2 l r22 r23 q1 + (10)

L r1 1  r2 r33. [7Z 1  Lz

It would be convenient if this translation transformation were

incorporated in matrix form. This can be accomplished by

forming an augmented 4x4 matrix and augmented vectors as

illustrated in Equation 11. Matrices of this form are

typically referred to as homogeneous transformation matrices.

9



yQ

'Y

T

0

Figure 4. A Rotated and Translated Coordinate Frame

0 n, ox~ a, p x'

Z' n z 0-az PZ

C C ii1

The upper left 3x3 submatrix has the same orientation

interpretat.;on as noted earlier where the n, o and a elements

are the direction cosines for the rotated x, y and z axis with

respect to the original axis respectively. The upper 3

elements of column four of the matrix define the origin of the

rotated and translated coordinate frame with respect to the

original frame. With this interpretation in mind, the

convention T,5 will be used when referring to a transformation

from frame i to frame j. When no subscript is indicated, TI,

then the transform is interpreted as being from a known

reference frame, which will be clear from the context, to the

10



jt coordinaite frame. Additionally, the previously described

3x3 rotational transformation matrices can be expressed

individually as 4 by 4 homogeneous transformation matrices as

well. The convention Rot(x,*), Rot(y,O) and Rot(zO) will be

used in the following discussion and these matrices are shown

in Equations 12 through 14.

1 0 0 C-

( ~ cosW -sir4 0(12)rz (' im 4n cos

0 0 1

cosO 0 sinO 0
0 i 0 0 (13)

-sinG 0 cos6 0
i o 0 0 1

foos4 -sint 0 01

F0t z,4) snCJ cos€ 0 01  (14)
0 0 1, i

![ 0 0 0 1 ]

Additionally, a standard translation transformation will be

denoted by Trans(x,y,z) and has the form shown in Equation 15

where the upper 3x3 rotational submatrix has been replaced

with , 3x3 identity matrix. If the coordinate frame is only

translated in one direction, say x, then the symbol Trans(x)

will be used to denote this transformation and the p, and p,

terms in Trans(x,y,z) are set to zero.

Given two coordinate frames F) and F1 , the homogeneous

transformation matrix T,' and x, in F', then x, can be found by

Equation 16.

11



1 0 0 p,

T1ans (x, y,z) = 0 1 0 (15)
0 0 1

000 

X0 = T" X (16)

If x, is known and x, desired, then

(To') ' X0 (T')- to' X3.
(T0 ) x0 = (17)

This of course requires knowledge of the inverse

transformation matrix. However, as described by Paul [4], if

a transformation matrix T has the elements of Equation 18

then its inverse is evaluated by Equation 19 where n, o, a and

p are the four column vectors of T and "." is the usual vector

dot product operator.

nx CO az PZ

nx y zP

x= OY o z -P.0 (19)
OY O z -p'a

0 00 1

As noted earlier, given transformations T,' and T 2,

then the transformation from FO to F2 can be calculated by post

12



multiplying T.1 by T1
2 . This product can then be designated as

To or simply as T2 where the reference frame F' is assumed.

Figure 5 illustrates various transformations by use of a

directed graph. Each node represents a coodinate frame and the

directed paths represent transformations in the given

direction.

1 2 T
0 3 1

3=Tr TT T o12

2

T 2 2
3 3

T 2
3 = (T3 )-

Figure 5. Directed Transformation Graph

2. Roll, Pitch, Yaw and Translation Transformations

To transform between two coordinate frames fixed in

space as shown in Figure 6 requires, in general, 3 rotations

and 3 translations. Noting that the order in which the

transformations occur is important, adoption of one of the

standards will help avoid confusion. The standard used for

this type of orientation transformation in this work is roll,

pitch and yaw.

13



1 Ot(y' 0)

y

TRANSQ-0. TRAN (-y)

Figure 6. Roll, Pitch, Yaw and Translation Transformation
Between Two Fixed Coordinate Frames

The roll, pitch and yaw rotation transformation will

be denoted as RPY(0,0,*) and is a product of the previously

described rotation matrices as follows

RPY(4,,6,4) = Rot(4 ,z) Rct(O,y) Rct(4fi,x) (20)

14



Carrying out the indicated matrix multiplication, the elements

of RPY(0,6,*) are given in Equation 21 where cosine and sine

are denoted by c and s for brevity.

cx CIO c,4bsOsIP-sI$4 CIsOc*+s s* 0-

sP4c, s4ses* c(c* s s c*-c s* (21)
-sO cOs* cOcp o
0 0 0

With the orientation now specified by RPY(0,O,*), it is only

necessary to specify the translations between the two frames.

This can be accomplished by multiplying RPY(0,6,*) by

Trans(x,y,z). Note that premultiplication by Trans(x,y,z)

implies that the translations occur on with respect to F° axis

and that post multiplication implies that the translations

occur with respect to the rotated axis. The convention used

throughout this work is post multiplication. Summarizing, the

transform To" is calculated by

To = RPY(4,O,*)Trans(x,y,z) (22)

= Rot(4,z)Rot(0,y)Rot(4,z) Trans(x,y,z)

with each step in the transformation illustrated graphically

in Figure 6. Transformations of this form will be denoted by

RPYT(0,0,,x,y,z) or simply RPYT.

3. Denavit-Hartenburg Transformations

As indicated in the preceding section, 3 axis

rotations and 3 translations are, in general, required to

transform between two coordinate frames. However, the geometry

of successive links of a manipulator imposes constraints on

the transformation between coordinate frames fixed in these
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links and a subsequent reduction in the number of rotations

and/or translations required. The form of these

transformations is a function of the link geometry, the type

of interconnecting joints and the placement (orientation and

position) of the link frames. Clearly a systematic approach to

frame allocation is desirable if not essential. One widely

accepted systematic approach is the Denavit-Hartenburg method.

Typical manipulators, such as the PUMA-560 illustrated

in Figure 7, consist of a series of links and joints. An n

degree of freedom manipulator will have n links and n joints.

The links and joints of the manipulator are labeled in the

following manner. The first joint is labeled 1 and the joint

number is incremented by one for each successive joint. Link

i lies between joint i and joint i+l. The base or base link is

defined as link 0.

Figure 8 illustrates a generic link. The parameter

a, is the common normal distance between joint axis n and n+l

and is usually referred to as the link length. A plane, normal

to a, at the intersection of the common normal a, and joint

axis n+1 will by definition contain joint axis n+l and lines

parallel to joint axis n. The angle between joint axis n+l and

a line parallel to joint axis n in the plane is designated an,

and is generally referred to as the link twist angle. In

addition to an, common normal a,-1 intersects joint axis n. The

distance between these two common normals along the axis is

designated d, and is usually referred to as the distance
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Figure 7. The PUMA 560 6 DOF Manipulator

between the links or the offset distance. Similarly, d,., is

the offset distance along joint axis n+1 between common

normals a, and a..,1. A fourth parameter O,, is defined as the

angle in a plane perpendicular to joint axis n between common

normals a,- 1 and a,.

With these parameters identified, assignment of

coordinate frames to each link based on these parameters can

17



Joint nJoint n +1

Link n

ona n

Figure 8. Generic Manipulator Link

be accomplished. Figure 9 illustrates the process for the case

of revolute joints. Frame n, Fn, lies at the intersection of

a., the common normal between joint axis n and n+l, and joint

axis n+l. If the joint axis intersect, then the intersection

is chosen as the origin which is consistent with the above

description noting that a, is zero. If the axes are parallel,

then the frame origin is chosen so that the offset distance is

zero for the next defined frame origin. The coordinate frame

axis are aligned as follows. z. lies on joint axis n+l. The x.

axis is aligned with a, when it exists. If an does not exist,

as in the case of intersecting joint axis, x. is aligned

perpendicular to joint axis n and n+l. The zero position of

the joint variable, On, is defined when xn_, and x, are both

parallel and in the same direction.
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Figure 9. Frame Allocation Between Rotary Joints

Before proceeding with an explanation of the method of

assigning coordinate frames for prismatic joints, a simple

illustration of a fundamental difference between prismatic and

rotary joints is offered. Consider a point P traveling in a

circular path in space as illustrated in Figure 10a. The path

of P defines a plane and hence a perpendicular direction.

Furthermore, the center of the circle in the above plane

clearly defines a point in space with which to reference point

P. On the other hand, linear motion of P as shown in Figure

10b offers no such reference point. In fact, the axis is

indistinguishable from any other parallel axis.
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Linear Motion

Figure 11 illustrates a prismatic joint located

between two rotary joints. For the prismatic joint, the joint

distance d. is the joint variable. As noted in the preceding

paragraph, the position of the joint axis is undefined and

only the direction of the axis is known. Consequently, the

common normal parameter a, is meaningless. With this in mind,

the origin of F" is placed coincident with the next defined

link coordinate frame origin. Note that this placement may be

ambiguous if the prismatic joint were at or near the end of a

serial link manipulator and an alternative placement may be

necessary. When placed at the next defined origin, the z. axis

is aligned with joint axis n+l. The x, axis is positioned
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perpendicular to z. and the prismatic joint axis n. The zero

position for prismatic joint is defined when the distance d.

in Figure 11 is zero.

Joonn n

Joint n -n

Link n~

Link n-2
\ t Xn

d -Zn. I

Figure 11. Frame Allocation for Prismatic Joints

With the manipulator placed in the zero position for

both rotary and prismatic joints as defined in the preceding

paragraphs, positive sense of rotations can be defined and

then the appropriate sense of all the z axis determined.

According to Paul [Ref. 5], the base link frame of the

manipulator, F), will be coincident with the origin of F'.

However, such an allocation will not afford a standard

transformation from F' to F1 unless joint axis 1 and 2 happen

to intersect. A more appropriate location of the base frame

will be to place the z. axis coincident with joint axis 1 and
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in a direction satisfying the right hand rule. The x, axis

should be aligned with the common normal between joint axis 1

and joint axis 2. If joint axis 1 and 2 intersect, then x,

should lie perpendicular to the two axes. Note that this

method is generally consistent with the previously described

method with the exception that d. is defined zero. This

definition of F° is not necessary but other locations may lead

to difficulty in determining identifiable parameters as will

be discussed later. Finally, the end link coordinate frame,

link 6 for a 6 degree of freedom manipulator, is placed

coincident with the preceding frame and with the z axis

aligned with the previous frame's z axis. For a given set of

joint variables and parameters, the end link frame is fixed in

space. With this in mind, a 6 degree of freedom homogeneous

transformation, such as Roll, Pitch, Yaw and Translation, is

then necessary to describe the pose of an end effector not

coincident with the end link frame.

Now that the pose of each link frame is defined, the

transformation matrices between frames can be developed. The

type and order of the rotation and translation transformations

which form the overall transformation from frame to frame

follows in a natural way from the path from F"- to F .

Referring back to Figure 9, Fn-1 is rotated On about z,-1 so that

rotated xn_1 is aligned in the direction of a.. The rotated

frame is then translated d, in the zn_, direction followed by

a translation an in the rotated x,-, direction. The rotated and
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twice translated frame now only requires alignment of its z

axis with joint axis n+l which is accomplished by a rotation

about the rotated x,-, axis, which now is equivalent to x,, an

angle an. In equation form, Tn_1 n can be expressed by

T I =Rot(z,9) Trans(O,O,d)Trans(a,O,O)Rot(x,a) (23)

Carrying out the indicated matrix multiplication,

cosO -sin~cosa sin~sina acosO]
sin6 cos~cosa -cos~sina asinO (24)

0 sina Cosa d
o 0 0 1

For a prismatic joint, T._,m reduces to the matrix in Equation

25.

[cosO -sin~cosa sin~sina 07
sinO cosOcosa -cosOsina 01T21 :i I(25)0 0 sina cosa d,

0 0 0 1!

4. Modified Denavit-Hartenburg Transformations

In general, application of the Denavit-Hartenburg

method will result in an accurate model of a manipulator.

However, some limitations exist such as the previously noted

potential ambiguity with regard to prismatic joints and a

disproportionate model (Ref. 6].

A proportional model can be defined as one in which

changes in any model parameter will result in changes in other

model parameters of the same order of magnitude. This is

clearly not the case with Denavit-Hartenburg when moelling

parallel or nearly parallel consecutive joints. Consider the
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two nearly parallel intersecting axis lying in a plane P in

Figure 12. A small rotation of axis uu' in the plane P will

result in a large change in the location of the point of

intersection. Large changes in the location of the common

normal am between nearly parallel axis can occur in much the

same way. Furthermore, small variations in orientation between

nearly parallel axis may actually place them parallel in which

case a unique common normal no longer exists. These

potentially large variations in the location of the common

normal corresponds to equally large changes in the parameter

dn in the Denavit-Hartenburg method. It should be noted that

this apparent flaw in the Denavit-Hartenburg method is only an

issue when developing a kinematic model for calibration where

the fixed model parameters become variables and are perturbed

numerically. Disproportionate changes will frequently result

in numerical instability, an issue which will be addressed in

greater detail in following sections. A model developed for

the sole purpose of determining the end effector pose with

respect to a given reference frame, the so called forward

kinematic solution, will have, excluding the joint variables,

fixed values based on assumed geometry and therefore immune to

problems of proportionality. Of course the validity of the

model is only as good as the geometric assumptions and this

provides the motivation for calibration.

The following modification to the standard Denavit-

Hartenburg transformations will result in a proportionate
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Figure 12. Illustration of Disproportionate Length Variation
Due to Small Axis Rotation

model for consecutive revolute joints. This modification

follows one proposed by Hayati and Mirmirani [Ref. 7]. Rather

than specifying a common normal distance between two parallel

or nearly parallel joint axis n-1 and n, define a plane that

is perpendicular to joint axis n-1 and located at the origin

of F"-' as illustrated in Figure 13. The intersection of this
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plane and joint axis n defines the origin of F which is

defined whether the axis are parallel or not. As shown, a

rotation about z._1 an angle 0 will place the rotated xn_1 axis

on the line O,-O and thus becomes the first transformation.

Translation along 0,-,0, a distance r, will place the origin of

the rotated and translated coordinate frame coincident with

O,-. In general, rotation about two different axes are

required to align the third axis of a frame in some

arbitrarily specified direction. Therefore, to align the z

axis of the rotated and translated frame with joint axis n+l,

which maintains continuity with the standard Denavit-

Hartenburg method, rotations about the x and y axis are

required. Equation 26 summarizes the above transformations in

equation form.

= Rot(z,0r)Trans(rr ,O,O)Rot(x, an)Rot(y, (26)

Carrying out the indicated matrix multiplication of Equation

26 results in the matrix elements given in Equation 27 where,

for brevity, c and s have been substituted for sine and cosine

respectively.

r-sasA-.cpcO -casO sacsO+s3ce rcff
SsascO-cpsO cac -sacPcO+sPsO rs9 (27)[ -casp sa ] (27)

0 0 0 i

Comparing Equation 26 and Equation 23 it can be seen

that a transformation T as in Equation 28 will satisfy any one

of the three manipulator transformations. This is accomplished
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by:

- setting B equal to zero for standard Denavit-Hartenburg
transformations between revolute joints;

- setting the parameters B and a to zero for standard
Denavit-Hartenbur transformations for prismatic joints;

- setting the parameter d to zero for the Modified Denavit-
Hartenburg transformation;

T = Rot(z,O)Trans(z)Trans(x)Rot(x,a Rot(y,3) (28)

Figure 13. Modified Denavit-Hartenburg Transformation

This transform T is the standard transform used in this work

for manipulator link to link transformations. The

transformation allows for standardizing parameter information

in tabular form as well as a single subroutine conputer code

for manipulator transformations. The elements of this

transform are given in Equations 29 where t,, is an element in

the i" row and jt" column of T. Any future reference to a

transform between links of a manipulator will be considered to

be in the form of Equation 29.
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= cosOcosp-sinOsinaasinp
t = sinOcosa
L. = costheatsinp+sin~sinacos3
t= acosO
t - = sinbcosP+cosesinasinP

:22 = cosecosaj
t22= sinfsinp-cosfsinacosp (29)
t14 = asinO
t, = -cosasino
t32 = sina
L13 = cosacp
t34 d
t 4 = t42 = t 4 2 = C
t44 = 1

5. Other Special Cases

Up to this point, two specific types of transformation

matrices have been developed, the Roll, Pitch, Yaw and

Translation matrix, RPYT, and the modified Denavit-Hartenburg

transformation matrix. These matrices will be used exclusively

for the kinematic models developed in this thesis. However,

there are cases when transformations must be described between

coordinate frames and other less well defined geometric

quantities. For example, suppose a measurement system somehow

clearly defines a point M in space but fails to define a set

of axis. To incorporate this measurement system into the model

of the manipulator, it is necessary to develop a transform

from the point, M, to a frame in the manipulator, normally F0 ,

as illustrated in Figure 14. There are no axes to align nor

are there axes on which to translate from M to the origin of

FO. However, a number of alternatives are available to

transform from FO to M. Any set of three of the six variables

of RPYT can be used to perform such a transformation so long
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as one of the variables is a translation. A transformation

satisfying the preceding, S],, can be formed from RPYT by

setting the irrelevant variables to zero. Such a transform

fixes a frame at point M which has axis orientation dependant

on both F° and S,". A transformation from M to F° can then be

calculated by inverting S0M. A frame defined in the manner

above will be denoted with italicized pr' so as to

distinguish it from an independently defined frame.

o

Figure 14. Frame to Point Transformation

6. The Kinematic Chain

The path through the series of frames illustrated in

Figure 15 can be thought of as a kinematic chain where the

transforms between frames are analogous to links. As described

earlier, the pose of the last frame in the chain with respect

to the origin of the chain can be formed by post multiplying

each transform in sequence as shown. Before applying this
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concept to a manipulator, it should be noted that it is

frequently convenient to define an external reference frame in

the manipulator workspace since F', as defined earlier, will

normally be internal to the manipulator structure and not

easily measured or referenced from the manipulator workspace.

In the fcllowing experimental work, this external reference

frame is coincident with the measurement system reference

frame and is referred to as Fm. If FO is a fully defined and

independent frame then all six parameters of RPYT are

necessary to transform from FO to FO and this transformation,

TO becomes the first link in the chain. The following links

in the chain are described by appropriate forms of the

modified Denavit-Hartenburg transformations. Recalling that

the last frame in the manipulator in accordance with the

Denavit-Hartenburg method is placed coincident with the

previous frame, then a RPYT transform is required to transform

from the last Denavit-Hartenburg frame to a frame located at

the end effector, FE. The pose at FE with respect to FM denoted

THE or simply T' can be calculated by Equation 30.

T =_TIT 'q n TE (30)

7. The Thirty Parameter Puma Kinematic Model

As noted by Mooring, Roth and Driels [Ref. 8], the

number of parameters N in a complete model is

N = 4R + 2P + 6 (31)
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Figre 15. The Kinematic Chain

where R is the number of rotary joints and P is the number of

prismatic joints. Complete in this sense means that the model

contains a fully defined independent external reference frame

and an independently defined tool frame. The PUMA-560 consists

of 6 rotary joints which by Equation 31 suggests that the

complete model will have 30 parameters. The PUMA-560 30

parameter model is developed in the following Section and the

actual frame locations are illustrated in Figure 16.

The location of the external or measurement system

reference frame is arbitrary within the manipulator's

workspace. All six parameters of an RPYT transformation will

be required to transform from Fm to F°. At this point, it will

be useful to distinguish between joint parameters and joint

variables as used in calibration. The joint variable, denoted

O,, is associated with the amount joint i is rotated from its
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Figure 16. PUMA-560 Frame Allocation

zero position as defined by a joint encoder. The joint

parameter, denoted 60, is essentially the error between the

encoder zero and the actual zero position of the jth joint as

defined by the Denavit-Hartenburg method. In the calibration

process, the value of the joint variable for a given position
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is considered fixed. The joint parameter or error is to be

determined from its nominal value which of course is zero.

With this in mind, the transformation ToI would, in part,

consist of a rotation Rot(zo,60,+,) which is equivalent to the

product of Rot(zo,60,) and Rot(zo),O). The first rotation,

Rot(z,,6 O), is between two fixed frames. Denoting the

intermediate frame as F0', then a RPYT transformation made up

of six fixed parameters, T °', could be developed which would

be equivalent to the product of TM0 and Rot(zo,60,) which is

made up of 7 fixed parameters. Therefore 60, is not

independent and cannot be individually identified. As a final

note, F0 is considered to be at the actual zero position, FO'

in the preceding discussion, TM0 is a transformation between

FM and F0 as now defined. Additionally, one reason for defining

the parameter d, to be zero is t- -liminate the dependency

that clearly would exist between the z translation in TM0 and

any subsequent translation do along the same z axis in T,'.

As described earlier, F0 is placed with the z, axis

coincident with joint axis 1 and directed upward in accordance

with the right hand rule. Joint axis 1 and 2 are nominally

coincident and perpendicular. F' is allocated in accordance

with standard Denavit-Hartenburg with z, aligned with joint

axis 2 and x, perpendicular to joint axis 1 and 2. With this

allocation, parameters ao and a, are nominally zero and -90°

respectively. Joint axis 2 and 3 are nominally parallel so F
2

is assigned using the modified Denavit-Hartenburg method. As
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illustrated in Figure 16, this places F2 external to the

manipulator. Due to the orthogonal nature of the axis thus

far, 02, a2 and B2 are all nominally zero with a2 nominally

431.85 mm as shown. Joint axis 3 and 4 are nominally

perpendicular and offset a perpendicular distance of nominally

20.33 mm which become a, in T23. The z axis of F' is aligned

with joint axis 4 with an offset distance, d3 , of 149.09mm.

Note that as illustrated, link 3 is shown with 0, equal to

approximately 900. Therefore, a, is ir, the negative x

direction and a3 is nominally 900. The z axis of F4 is placed

in the direction of joint 5 which is nominally coincident with

and perpendicular to joint axis 4. Consequently, 0, and a, are

nominally zero and a, is -90° with the chosen direction of z.

The distance between F3 and F' along joint axis 4, which

corresponds to d,, is 433.0 mm. F5 is placed so that z5 lies in

the direction of joint axis 6 which is again nominally

perpendicular to joint axis 5. Therefore, 0., d5 and a, are

nominally zero and a, is nominally 90* for the chosen

direction of z5. According to standard Denavit-Hartenburg

methodology, a sixth frame would be placed with its origin

coincident with the origin of F5. This would then be followed

by a six parameter transformation to the end effector frame.

However, in a similar manner as before, the parameters of T6,

would be dependant on all four parameters of T56 and hence not

independently identifiable. Therefore, F5 will be considered

the last link frame and T5E will be a RPYT transformation
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containing a rotation about z, equivalent to the sum of the

joint variable 0,, joint parameter 606 and any other fixed

rotation necessary for proper alignment at the end effector.

Table 1 summarizes the parameters for the five

modified Denavit-Hartenburg transformations. A tabular

presentation of this form is usually referred to as a

kinematic parameter table. The bold elements comprise the 18

identifiable parameters of the manipulator. The other elements

are zero as defined previously. The additional 12 parameters

of the 30 parameter model are the variables of TM° and T5,

which are dependant on the location of the external reference

frame and the geometry of a particular end effector. The

parameters of Table 1 were utilized in each of the following

experiments. The makeup of TM° and Tsr will be described for

each specific case.

TABLE 1. PUMA 560 KINEMATIC PARAMETER TABLE

T d, (mm) a, (mm) a 8,

0-1 0.0 0.0 0.0 -90.0 0.0

1-2 0.0 0.0 431.85 0.0 0.0

2-3 0.0 149.09 -20.33 90.0 0.0

3-4 0.0 433.00 0.0 -90.0 0.0

4-5 0.0 0.0 0.0 90.0 0.0
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B. NUMERICAL SOLUTIONS UTILIZING IMSL ROUTINE ZXSSQ

1. Introduction

The IMSL routine ZXSSQ is a Levenberg-Marquardt

algorithm for the solution of non-linear least squares

problems. The general problem statement follows

- Minimize: f1(x)
2 + f2(x)

2 + . . . + f,(X)2

- Over: x = [ x1, x2, * * *, XN

At the n"h iteration, an estimation of x*'-is calculated using

a numerical estimate of the Jacobian. The Jacobian estimate is

calculated by a forward or central finite difference method.

The routine requires a user supplied function for

calculation of the f,(x) functions. An initial estimate of x

is supplied to the routine by the main or calling program

along with convergence criteria. Three convergence criteria

are available:

- NSIG: The first convergence criteria is satisfied if on
two successive iterations, the parameters agree to NSIG
significant digits.

- EPS: The second convergence criteria is satisfied if the
residual sum of squares for two successive iterations is
less than EPS.

- DELTA: The third convergence criteria is satisfied if the
euclidean norm of the estimated gradient is less than
DPLTA-

Satisfaction of any of the three criteria will halt program

execution and a number of parameters are returned to the

calling program including the final estimate of x, the final

value of each f,(x), the residual sum of squares in variable

SSQ and the satisfied convergence criteria. Three variations
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of the algorithm are selectable by defining option parameter

IOPT. If the residual sum of squares is close to zero then

setting IOPT to zero (Brown's algorithm without strict

descent) will usually perform satisfactorily. This setting of

IOPT was used for all applications of the routine due to the

problem formulation.

The general program flow is illustrated in Figure 17.

An initial estimate, x', is supplied from the calling program

along with several parameters including the convergence

criteria and algorithm option. The routine then calls the user

supplied subroutine N times where N is the number of elements

of x in order to calculate the finite difference gradient

approximations. ZXSSQ then calculates a new estimate, x', and

then calls the user supplied routine to calculate f1 (xn'
1 ). The

process repeats until any one of three convergence criteria is

satisfied.

Although mathematically equivalent, two different

formulations of the problem statement for implementation of

ZXSSQ are used in this thesis. Each formulation is described

in the following two sections.

2. Data Fitting

In the calibration process, measurement of the end

effector pose, full or partial, are made and then this data is

used to adjust or fine tune the kinematic model parameters. A

simplistic view of this problem consists of holding the usual

model variables fixed and varying the constants. A simple
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Figure 17. General Program Flow for Implementation of ZXSSQ

example follows.

Suppose the mathematical model for a physical process

is assumed to have the form of Equation 32.

g(x,y) = alx 2 + a2x + a 3y 2 - a 4y + a5  (32)

The values of the constants of Equation 32 are arrived at

based on theory, physical laws, reasonable assumptions, or

design parameters and assumed to be greater than zero for this

example. It is desired to know the actual values for these
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constants. For application of ZXSSQ, the problem can be

formulated in the following manner.

Measure g(x,y) for m known values (x,y). Denote these

measured g(x,y) as h,, h2, • • • , h. where h, corresponds to

(x,,y 3 ). Compute g,(x,,y) from Equation 32 and then let

f, = g, - h,. In this problem, the five a, are the variables.

The problem statement is then

- Minimize: [f,(x)] 2

- Over: x = [ a,, a2, a3 , a4 , a. ]

The problem is now in a form suitable for application of

ZXSSQ. The calling program would provide the assumed values of

the constants al, a2, a3, a4 and a, as initial value x°. The

user supplied function would compute values of g, based on

(x,,y,), which are fixed for a given i, and x"*', the updated or

perturbed values of a,, a2, a3 , a4 and a,. Updated values of f,

are then calculated using the new values of g,. Note that this

problem consists of 5 unknowns, the coefficients of g in

Equation 32, and each measurement provides one known value h,.

Assuming that the actual system does satisfy a paraboloid

relationship and in the absence of measurement noise, then at

least 5 measurements are necessary for a solution.

3. Optimization

ZXSSQ can be employed in an optimization scheme in

which one or more analytic expressions are minimized. In this

case, the constants are fixed and the variables are perturbed.

A simple example follows.
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Clearly, a simple analytic solution can be obtained

for the minimum of the paraboloid of the previous example.

However, for illustrative purposes, consider g to be described

by two functions g, and g2 as shown in Equations 33.

g(x, y) = g- (x, y) + g2 x, y),
where g(x,y) aX2 - a-y + (33)

g2 (x,y) = ax + a 4y

In this example, the problem can be stated,

- Minimize: (g,(x))2 + (g2(x))
2

- Over: x = [ x, y ]

which is now in the proper form for application of ZXSSQ. In

this case, the calling program must supply an initial guess of

the vector x0. If the minimized functions are unimodal, any

reasonable value of x0 should allow convergence. Problems

associated with non-unique solutions can be addressed in a

number of different ways and are somewhat problem dependant.

A good initial estimate of x° when known may suffice.

Another problem which may arise in an optimization

problem is that of proportionality. It is clear that it would

suffice to minimize g(x) rather than the two functions g, and

g2 although both approaches should have similar results. The

particular problem formulation chosen in this case

demonstrates two ways in which a problem can be

disproportional. First of all, for values of x and y much

greater than or less than one, small changes in x and y may

have much greater effect on g, than on g,. Secondly, if a5 is

much greater than zero, then at or near the minimum, g, may be

40



much greater than g2 . Disproportionate proble,. formulation can

lead to numerical instability or inaccuracies. Scaling

techniques, such as dividing g1 by a,, or reformulating the

problem statement can reduce or e.iminate difficulties

associated with proportionality.

C. KINEMATIC MODEL PARAMETER IDENTIFICATION METHODOLOGY

1. General Scheme

Without loss of generality, the general scheme will be

described considering the previously described 30 parameter

PUMA kinematic model and a measurement system capable of full

pose measurement. Less capable measurement systems generally

result in a reduction in the number of identifiable parameters

in the model. However, the general scheme remains the same and

the specific differences will be addressed on a case by case

basis.

Given the 30 parameter kinematic model based on

nominal values, actual parameter identification or calibration

is performed in the following manner. Measurement of the end

effector pose is made and the joint variable values and the

measurement pose data are both recorded. The manipulator

joints are varied, additional measurements made and recorded,

and the process repeated until a sufficient data base is

collected. Sufficient has at least two meanings in this case.

First of all, note that the model must reflect the

capabilities of the measurement system. If the measurement

system is capable of measuring full pose as in this case, each
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measurement consists of six knowns, three positions and three

orientations. For an N parameter model, a minimum of N/6

measurements are required. However, some measurement noise is

inevitable and some larger number of measurements must be

taken to achieve a desired accuracy. Some additional factors,

some of which will be discussed later and some which are

issues for further research, must be considered when

attempting to quantify the meaning of a sufficient data base.

The pose data can be recorded in matrix form and will

be denoted TEAi where E refers to end effector as before, A

refers to actual or measured and i used to denote a specific

measurement. The forward kinematic solution can be computed

based on the nominal parameters and the it set of joint angles

and stored in TE" where C refers to the calculated value.

Recall that when calculating the forward solution, both the

joint variable and joint parameter must be taken into account.

A matrix AT, can be computed from the difference of TEA' and

Trcl. As described by Paul [Ref. 9], a differential

transformation matrix has the following form

[0 -8, by ,,

6 0 -6,dy (34)
-8y 6X  0 d

0 0 0 0

The A matrix of Equation 34 is a good approximation for small

joint variable variations and provides a reasonable

approximation if all nominal parameters are "close" to their
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associated actual values. AT, will not necessarily have the

odd symmetry of the upper 3 by 3 submatrix of the A matrix of

Equation 34. However, an average value of the magnitude of 6.,

6 and 6. can be computed as shown in Equation 35

ax = t_- -t2

t13 - t31 (35)
2

6z t1 2 - tz 4

where t,, is the ith row and jth column entry of AT,.

This problem can now be stated in a form acceptable for

implementation of ZXSSQ:

n 6

Minimize: E E (fi (Z) 2 (36)

Over: x= [ ,ir ,xr ,yn,zIr,al, a , .. , ,X YE, ZEI

where x is vector of length 30 containing the kinematic

parameters, N is the number of measurements, i corresponds to

each of the N measurements and

f., (x) = 8x
f1i2 (x) =86

fi,3 (Z) 8 (37)
fi,4 (X) =d.

fj,1 (x) =d

Note that 6., 6y, 6, are the average values of AT, as computed

in Equations 35 and d., dy and d. are the t,,, t 24 and t3,

elements of AT,.
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2. Program ID6 (Generic Version)

The progran ID6 was used to compute the numerical

solution of the calibration problem. A flowchart for the

program is shown in Figure 18. The program is essentially the

same for all three experiments performed in this thesis.

Specific differences will be addressed as each experiment is

presented.

READ /

INPUT.DAT /

1
INITIALIZE X

READ 7
MEASUREMEN /

DATA /

i
CALL

CALIBRATION
/ DATA

CALCULATE
POSE ERROR

WRITE
POSE
ERROR

END

Figure 18. Program ID6 Flowchart

44



The program reads an input file consisting of the

kinematic parameters for the particular model. These

parameters are used to initialize the vector x for the

subroutine ZXSSQ. The measurement data set is read from a file

and assigned to several different vectors. One vector contains

the full or partial pose data of the measurements and is of

length N where N is the number of measurements. In the case of

full pose measurement, this vector has dimension 4 by 4 by N

and contains N TE matrices. The joint variable data is stored

in six 1 by N vectors, one vector for each joint variable.

The various parameters and options associated with ZXSSQ are

init 4alized and then the subroutine is called.

Upon ZXSSQ termination, the updated values of the

kinematic parameters are output to a file along with the

residual values of position and orientation as appropriate.

Associated with each version of ID6 is the "user

defined subroutine" called by ZXSSQ titled PUMAARM. The

subroutine is passed the current value of x for either

gradient estimation or computing the updated value of the

minimizing functions. The joint variable data and measurement

data are passed via a common block. The parameters are updated

by this current value of x. N iterations of the following

calculations are performed where N is the number of

measurements.

During the it" iteration, the joint variables for

measurement i are added to their corresponding joint
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parameters. The forward kinematic solution is calculated based

on the current value of the parameters. The minimizing

functions for measurement i are calculated based on the

forward solution and the measurement data as described in the

preceeding section. The process is repeated until i = N at

which time the function values are passed back to ZXSSQ.
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III. THREE CALIBRATION TECHNIQUES

A. COORDINATE MEASURING MACHINE FULL POSE CALIBRATION

1. Physical Description of the Measurement System

a. The Coordinate Measuring Machine

The Coordinate Measuring Machine, CMM, is

illustrated in Figure 19. The horizontal base assembly

consists of a fixed base and a carriage which is free to move

along the length of the assembly. This direction is usually

defined as the x axis. The carriage is held in alignment by

two guide bars which have precision racks machined on their

surfaces. The racks provide motion through a rack and pinion

arrangement and rotation of the x axis knob as shown in Figure

19. Optical encoders in the carriage assembly provide

displacement measurements. The vertical column is constructed

and functions in a manner similar to the x axis carriage. This

direction is designated as the y axis. Motion in the z

direction is accommodated by the horizontal assembly mounted

on the y axis carriage as shown, and is constructed and

functions in the same manner as the other two axes.

A display unit, not shown, is provided and is

capable of indicating either in inches or millimeters. The CMM

is capable of 0.01 mm accuracy on all axis. The display output

can be zeroed for all axes simultaneously by depressing the

"ALL ZERO" pushbutton or each axis can be zeroed separately by
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pressing the appropriate axis "zero" pushbutton and contact

with a touch probe.

0
ly Y

Y-axis receptacie

Z-axis receptacie

X-axis recectacle

Figure 19. The Coordinate Measuring Machine (CMM)

The touch probe, illustrated in Figure 20, is

mounted on the end of the z axis of the CMM. The touch probe

tip is a machined sphere of 3.0 mm diameter. When the probe

comes in contact with an object, the indicator will illuminate

and the display unit readout will hold its present reading

until the probe is no longer in contact. When the display unit

"zero" is set for a particular axis, the axis readout is

zeroed by touch probe contact. This is a useful feature
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Contact
Indicator

Probe Tip

Figure 20. CHM Touch Probe

because it provides a method of establishing a reference frame

external to both the manipulator and the CMM, which will be

described in the following sections.

A machined cube, similar to that illustrated in

Figure 21, was mounted in the common working volume of the

PUMA and the CMM. The faces of the cube were nominally aligned

with the axis of the CMM. A corner of the cube was chosen as

the reference point of the measurement system which eliminated

the need for absolute alignment of the cube faces with

parallel planes formed by the CMM x, y and z axis. Using the

touch probe zero reference feature, a reference point could be

established. For example, with the display unit 'x-zero'

enabled, the probe can be placed near the y-z face of the cube

in close proximity to the reference corner and then slowly

moved in the x direction until contact is made and the x=O

reference established.
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Ra.relnc.

Frar) a.

Figure 21. Measurement System Reference Cube

b. Manipulator End Effector

To calibrate a 30 parameter model of the PUMA 560

requires measurement of the pose of the end effector. Since

the CMM is only capable of position measurement, the end

effector must be of some known geometry such that orientation

can be calculated from a series of position measurements. The

end effector illustrated in Figure 22 was used in this

experiment.

The five machined tooling balls of radius 6.35 mm

are mounted orthogonally to the circular plate and post as

shown. The fabrication process guaranteed orthogonality of the

fixture, but the specific location of each tooling ball on its

respective axis was not guaranteed. These positions were
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Sz6

x 6 Y Y6

Figure 22. End Effector for Full Pose Measurement

determined by a statis calibration with the CMM. The balls

were numbered one through five and their corresponding axis

and distance along the axis to the origin of the coordinate

frame are listed in Table 2. The lower flange is mated with

the PUMA end effector mounting flange.

2. Theory

a. Closed Chain Kinematic Model

The link parameter table listed previously in

Table 1, is used for manipulator transformations in all three

experiments. The only difference in the models for each

experiment is in the identifiable parameters of T.O and T'.
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TABLE 2. END EFFECTOR BALL DESIGNATIONS AND DIMENSIONS

Ball # Axis Distance (mm)

1 z 51.111

2 x 50.740

3 y 50.703

4 -x 50.913

5 -y 50.988

Since the CMM is capable of fully defining its own coordinate

system, and with the use of the previously described end

effector, full pose measurement is possible and all 30

parameters of the model can be identified. Table 3 lists the

nominal values for the 12 parameters of TM° and TjE and are

based on the nominal position of the measurement system

reference point, orientation of the CMM with respect to the

PUMA base frame and the nominal orientation of the end

effector. The values are typed in bold to emphasize that they

are all identifiable.

b. Developing Full Pose Data

To determine the pose of the coordinate frame

defined on the end effector first requires knowledge of the

coordinates of the center of the tooling balls with respect to

F". Recall the relationship given in Equation 1 between the

radius r of a sphere, its center at x,, y,, and z,, and the
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TABLE 3. KINEMATIC PARAMETER TABLE FOR T.° AND T..

Tm°  T 5

180.0" 90.0*

60.00 0.00

90.0* 0.0

x -394.0 mm 0.0 MM

y -383.0 mm 0.0 mm

z 474.0 mm 134.0 mm

coordinates of a point P on the surface of the sphere.

r = N/(Xo-Px)2 + (y 0 -pj) 2 + (zo-pz) 2  (38)

Since measurement of points on the surface of the sphere are

possible with the CMM and the radius of the precision tooling

balls is known, then three unknowns remain in Equation 1. This

implies that a minimum of three measurements are required for

a fully defined problem involving three non-linear equations

with three unknowns. ZXSSQ can be employed for a solution with

the following problem statement:

- Minimize: Z (f,(x))'

- Over: x = x 0 , Yo, Zo

where

- x,, y, and z, are the coordinates of the center of the
sphere
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- f,(x) = r - r,

- r is the radius of the sphere

- r, is calculated from Equation 1 for the ith measurement of
a point on the tooling ball

Simulation and experiment showed that four measurements

provided sufficient accuracy.

With the coordinates of the center of the tooling

balls now available, determination of the pose can be

developed. Recall that the coordinates of a poiit P described

with respect to FE can be transformed into FM coordinates by

P = T PE (39)

Unfortunately, in this case, P, and P, are known and THE is the

unknown and the vector of the coordinates of PE can not be

inverted in order to solve for the transformation. However, as

described in Paul [Ref. 101, all the coordinates of an object

can be transformed from one frame to another simultaneously by

composing a matrix whose columns are the coordinates of the

object to be transformed and then pre-multiplying by the

transformation matrix describing the frame. Note that the

points are described by the usual augmented 4xl vectors. Let

PH and P, denote two matrices composed of the coordinates of

the center of four balls, then

PM 2: p (40)PM =

It may not always be possible to measure four

balls for any given pose. However, with the given geometry, a
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fourth location, orthogonal to three measured balls, can be

synthesized by

P; =P- - P. X ( P - P,) (41)

where the subscripts are not intended to imply any order or

particular ball, but only three different balls. This

calculation must be performed twice, once for points described

with respect to F" and once for points described with respect

to Fr.

3. Simulation

a. Introduction

The calibration process is well suited to computer

simulation for the following reasons:

- Experimental data simulation, including noise injection,
is usually a straight forward process.

- The heart of the process is a numerical solution performed
by computer.

- Analysis of the results is easily performed on computer.

Several advantages are offered by first performing a computer

simulation:

- The identification algorithm can be tested.

- Trends in the accuracy of the solution when compared with
the number of measurements based on predicted noise level
can be identified.

- To some extent, the model can be validated during the
simulation. For example, if dependant parameters are
included in the model, the identification algorithm will
not converge to the correct solution since no unique
solution exists.
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The general simulation scheme used tor this

experiment is illustrated in Figure 23. The programs and their

associated input and output files are described in the

following sections.

JOINT

PUPMA-VAR.DAT .......

POSE

// I RESULT.DAT

INPUT.DT IDG '

RESULT.DAT

VER IFY

POSE VE .DAT 

Figure 23. CMM Simulation Scheme

b. The Program JOINT

The program joint uses a Monte-Carlo method random

number generator to produce random sets of six joint variable

values. Three options for the range of joint motion for each

joint are available. Full range, one-half of normal range, and

one-quarter of normal range of joint motion can be selected

and this allows simulation of the effects of a limited working

volume. The number of sets of joint angles is interactively

supplied to the program. The program writes the joint angle
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sets to a file titled PUMAVAR.DAT. The program is executed

twice with the second output file renamed POSVER.DAT for use

in a verification program which will be described later.

c. The Program POSE

Program POSE reads a file, INPUT.DAT, containing

the following information:

- the previously described kinematic parameter table;

- the number of observations or measurements simulated;

- the number of model parameters;

- length and angular offsets;

- length and angular noise scaling constants.

The length and angular offsets are added to each of the

identifiable parameters so that a known model, different from

the nominal model, can be used to generate the simulated pose

measurements. POSE reads the random sets of joint angles from

the file PUMAVAR.DAT. The joint variable angles are added to

the offset joint parameters and a forward kinematic solution

is calculated. The resulting solution, a 4x4 TE matrix based

on offset parameters, is stored in a file titled PUMAPOS.DAT

along with the corresponding set of joint variable data. Prior

to storage, noise can be injected into the joint variable

angles, and separately into the orientation and position

elements of T. The random noise is calculated by scaling the

output from a Monte-Carlo random number generator and then

added to the desired parameters.
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d. The Program CID6

The previously described file INPUT.DAT is read

and stored in CID6. The identifiable nominal parameters are

used to initialize the ZXSSQ x vector. The simulated pose

measurements and joint variable data are read from

PUMAPOS.DAT and stored in their respective arrays. ZXSSQ

parameters are initialized and then the subroutine is called.

ZXSSQ and the external subroutine PUMAARM

perform the identification process as described in the

Kinematic Model Identification Methodology Jection general

scheme, and summarized in Equation sets 36 and 37.

After termination of ZXSSQ, the calibrated link

parameter table is written to a file titled RESULT.DAT. Up to

this point, the simulation version of this program is

identical to the experimental version. However, in the

simulation, the actual model parameters are known since they

were formed by adding a known offset to the nominal

parameters. Therefore, the accuracy of the calibrated

parameters can be determined by again adding the offset values

to the nominal parameters and comparing these values to the

calibrated values. An rms value for both length and angular

parameters is computed and also written to RESULT.DAT along

with the residual from ZXSSQ.

e. The Program VERIFY

As a final test of the accuracy of this method,

the program VERIFY computes a forward solution based on the

58



actual model parameters and the calibrated parameters, and

compares the resulting poses. To compute the actual pose,

VERIFY reads file INPUT.DAT and, as before, adds the length

and angular offsets to the appropriate kinematic parameters.

The calibrated kinematic parameter table is read from the file

RESULT.DAT. Two separate forward solutions are calculated

based on the two sets of kinematic parameters and sets of

random joint angles produced by JOINT and read from the file

POSVER.DAT described earlier. An average orientation and

position error is calculated from the difference between the

two TE matrices resulting from the forward solution

calculations.

4. Experiment

a. Data Acquisition

As noted in a preceding section on developing full

pose data, four measurements with the CMM are required to

locate the center of one tooling ball of the end effector.

Additionally, the centers of three tooling balls were required

to develop a full pose measurement TE. A program, CMMPOSE, was

written to convert the CMM position measurements into pose

measurements.

CMMPOSE is given three sets of four CMM position

measurements interactively along with the associated ball

numbers. A subroutine, BALL, calculates the center of each

tooling ball using the previously described algorithm. After

the center of each ball is calculated, the residual is
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displayed on the terminal and the user is prompted to either

keep or reject the value based on the residual. Residuals

greater than 10-6 were rejected and a second set of

measurements taken. This process allows the user to reject

poor data, probably caused by incorrect reading of the CMM

display or data entry errors. CMMPOSE then synthesizes a

fourth spatial position, composes the two position matrices

described earlier and then computes the measured pose. An

orthogonality check is performed by

n • o, n " a, o a (42)

where n, o and a are vectors corresponding to the first three

columns of TE and "."UI is the dot product operator as before.

Since these vectors correspond to rotated coordinate axes then

their dot products should be zero. If the orthogonality check

passes, then the program stores the TE matrix and the current

joint angle variables which are interactively input by the

user in a file PUMAPOS.DAT. Joint angle variables of the PUMA

560 can be obtained from the PUMA 560 console by typing

"where" on the keyboard.

Data was acquired by first zeroing the CMM at the

reference point as described earlier. The CMM was slowly

positioned so that light contact was made with the surface of

one of the tooling balls. Care was exercised to insure that

the direction of approach was nearly normal to the tangent

planes of the tooling ball and to the touch probe tip, at

their contact point. This reduces possible errors caused by
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deflection of the tip away from the point of contact. This

process is repeated with the position data supplied to

CMMPOSE, along with the corresponding joint variable angles.

Two operators, one operating the CMM and positioning the PUMA

with the teach pendant,' and another entering data at a

console can expect to make one full pose measurement in

approximately 10 minutes. Figure 24 illustrates the CMM ready

for a position measurement to be taken.

b. Parameter Identification and Verification

Program CID6 was modified as described earlier for

experimental data. A total of 44 poses were collected and the

entire set of poses were used to calibrate the PUMA. Table 4

lists the nominal and calibrated values of the kinematic

parameters. Length and angular parameters are reports in units

of millimeters and degrees, respectively.

Since the actual parameters are not known as they

are in the simulation, a program such as VERIFY cannot be

used. However, to better evaluate the accuracy of the

resulting calibration, the set of 44 poses and associated

joint variable angles were divided equally into two sets, S,

and S2 . S, was used to perform a calibration. S2 was then used

in a verification process in the following manner. Forward

'The PUMA 560 can be controlled by computer or manually
controlled by the teach pendant. The teach pendant allows an
operator individual positioning of each joint when operated in
"joint mode". Additional teach pendant modes are available for
positioning the end effector with respect to the manipulator tool
frame or base frame.
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Figure 24. Full Pose Measurement With the CM

solutions using the joint variable angles of S2 and the

parameters calibrated with S, were calculated. The difference

between these calculated poses and the poses of S2 provides a

good indication of the improvement in accuracy. An rms value

of 0.3 mm was calculated for the position error.
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TABLE 4. NOMINAL AND CALIBRATED KINEMATIC PARAMETERS

Parameter Nominal Calibrated
M 180.0 179.9579
a1  0.0 1.5120

-90.0 89.0219

X -0394.0 -393.9838
Ym -383 .0 -405.%r'608
Z, 474. 0 466.•8381
a., 0.0 -0.04923
a, -90.0 -89.9977

60, 0.0 -0.4888

a 2  431.9 432.1216

a 2  0.0 -0.0303
8 2  0.0 -0.01515

663 0.0 -1.2069
d, 149.1 149.1455
a 3  -20.3 -19.2270

a, 90.0 90.0512

604 0.0 -0.9144

d4 433.0 432.8899
a4  0.0 0.0040

a,, -90.0 -89.9909
60 0.0 2.2364

d, 0.0 -0.6629

a, 0.0 -0.0258
a, 90.0 89.9345

90.0 91.2400
OF 0.0 -0.0979

*E 0.0 -0.0575
XE 0.0 0.1863

YE 0.0 -0.2329
Z_ 134.0 133.1557

B. THE MODIFIED LINEAR SLIDE METHOD

1. Introduction

In an experiment performed by Potter [Ref. 11], a PUMA

560 was successfully calibrated using a measurement system

referred to as a linear slide. The original experimental
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measurement system and the modification will be described in

the following sections. Although the method offered several

apparent advantages over the CMM calibration method, the

resulting accuracy was less by a factor of three. Two possible

explanations for the resulting loss of accuracy are increased

measurement noise due to loading effects and limited range of

joint rotation. The modification described in the following

was attempted to improve the range of joint motion and thereby

increase the overall calibration accuracy.

2. Physical Description of the Measurement System

In the original experiment, the vertical post (y and

z axis) of the CMM were removed. A plate was manufactured

which mates flush with the end effector flange of the PUMA and

flush with the X carriage of the CMM in the position vacated

by the vertical post. In this configuration, the orientation

of F' is fixed and the end effector restricted to linear

motion along the x axis of the CMM base. The experimental

setup is illustrated in Figure 25. As shown in the figure, the

CMM base was placed on a ramp. The ramp was necessary to

ensure adequate rotation of all PUMA joints. For example, due

to the design of the PUMA, if the slide was placed

horizontally on the table, essentially no rotation of the

wrist, joint 4, occurs during translation along the axis of

the CMM base. With no wrist rotation, the PUMA becomes a five

degree of freedom manipulator and the kinematic model must be

changed to reflect this apparent loss of a joint. Additional
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problems may be encountered with respect to identification

when joint rotation is limited and these problems will be

discussed in greater detail later. The position and

orientation of the ramp, as shown, offered reasonable joint

excursion for all joints as the end effector moved along the

slide.

Figure 25. PUMA Calibration with a Linear Slide
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To improve the range of joint rotation, a ball joint

was placed between the PUMA end effector flange and the X

carriage of the CMM. A drawing of the fixture can be seen in

Figure 26. In this configuration, the complete range of motion

of joints four, five and six could be achieved. Approximately

20 additional degrees of rotation could be achieved for joints

two and three. However, joint one rotation remained

essentially unchanged.

Note that for both methods, the end effector of the

PUMA is physically constrained, which requires the PUMA to be

placed in "free" mode.2  Consequently, the PUMA must be

supported by an operator during calibration to prevent it from

collapsing and damaging itself or the measurement system.

3. Closed Chain Kinematic Model

The closed chain kinematic model for the modified

linear slide method varies significantly from the original

linear slide method, which will be described in another

section of this thesis. As noted previously, the kinematic

parameters listed in Table 1 are used to describe the

manipulator. It is the parameters of T,° and T,! that must be

determined. First, consider the ball joint attached to the end

effector flange. A ball joint has three degrees of freedom,

2Each joint of the PUMA is equipped with a coarse and fine
joint encoder and servomotor. Additionally, joints one, two and
three are equipped with brakes which prevent the manipulator from
collapsing when power is removed from the servomotors. In "free"
mode, power is supplied to the joint encoders but no power is
supplied to the joint motors and all brakes are released.

66



PUMA End Effector

CMAI Carriap,

Figure 26. Modified Linear Slide End Effector

rotation about any setl of three orthogonal axes placed at the

center of the ball. Ball joints are fixed in translation.

Arbitrary rotational motion and the fixed translation

relationship as observed through a series of measurements will

def ine a point in space, but no set of f ixed axes can be

associated with this point. Therefore, F' is assigned to the

point in space defined by the ball joint. Note that the ball
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joint must be "exercised" in all its degrees of freedom as

observed through a series of measurements in order for the

model to hold. Now as the point defined by the ball joint

translates along the axis of the CMM base, a specific axis

rather than a direction is defined. The location of F is

arbitrarily defined by zeroing the readout on the CMM display

unit at some point along the axis. This zero point is fixed in

space with respect to the ball joint location. Fm is then

defined to be this fixed point in space and the axis along

which the ball joint travels is associated with F' as well.

Summarizing, F' consists of a fixed point and an axis, and FE

consists of simply a point. As noted earlier, any three of the

six parameters of RPYT are sufficient to transform from a

frame to a point as long as one of the parameters is a

translation. The rotation Rot(o,z6 ) and translations along x

and z were chosen for TJE. Since F' is not fully defined, the

transformation T ° is developed by considering Tom and then

inverting this transformation. In general, two rotations are

required to align a particular frame axis with an arbitrary

axis in space. Three more parameters are then required to

transform to a point on the axis. The kinematic parameters for

T ° and T5J are listed in Table 5 where the identifiable

parameters are typed in bold.

With these eight identifiable parameters added to the

18 identifiable parameters of the PUMA kinematic model, the

closed chain model consists of a total of 26 identifiable
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TABLE 5. KINEMATIC PARAMETERS FOR T.- AND T,'

Tm°  T 5

195.0" -41.0*

e -30.0" 0.00

0.0 0.0

x -180.0 mm 78.0 mm

y -380.0 mm 0.0 mm

z 360.0 mm 79.0 mm

parameters. With the PUMA end effector ball joint at some

position along the slide, the x, y and z position is known

with respect to F. The x coordinate is the displacement of

the ball joint from the zero reference, and the y and z values

are zero. Th-refore, a minimum of 9 measurements are necessary

for a solution in the absence of noise.

4. Simulation

a. Introduction

In the CMM experiment, simulation data was easily

developed by generating a random set of joint variables and

computing the forward kinematic solution since the pose of the

end effector was not important. However, in this experiment,

for a given x coordinate, the end effector position is known

and the joint variable angles corresponding to that position
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must be determined. This is a special case of the so called

inverse kinematic solution. In general, there is no guarantee

that an analytic inverse solution exists. Furthermore, there

are problems of uniqueness and numerical instabilities that

arise from the cosecant and secant functions that are inherent

in the analytic expressions. Consequently, a numerical

approach is used in this case to compute the simulation data.

The position data can be generated by randomly

generating a value for x displacement along the slide. As

stated earlier, the y and z components are zero. These values

become the "desired" end effector position. For a given set of

joint variables, a forward solution based on the given model

can be calculated resulting in an end effector position. The

difference between the calculated end effector position and

the "desired" position, becomes a set of error functions to be

minimized. The problem statement in a form suitable for ZXSSQ

implementation is:

- Minimize: (f(x))2 + (f2(x))
2 + (f3(x))

2

- Over: x = [6,, 0 2 , 6,, 64, 0" 0.]

where f, is the difference between the calculated and

"desired" x coordinate of the end effector, and f2 and f3 are

the calculated y and z coordinates.

The suite of simulation programs and their

interaction is similar to the CMM simulation scheme and is

illustrated in Figure 27. Program listings arc found in

;ppendices A, B and C.
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-t BLI ISC

SPUMAPOS.D T

IMPUT.DAT BIDG

RESULT.DAT

BUERIFY

POSVER.DAT

Figure 27. Modified Linear Slide Simulation Scheme

b. The Program BLINSC

BLINSC reads in the kinematic parameter table and

additional information as described in the CMM experiment from

a file titled INPUT.DAT. Known length and angular offsets are

added to the parameters. The x vector described in the

preceding paragraph is initialized. The x vector can be

initialized to all zeroes or may be initialized such that

solutions are "driven" to a particular arm configuration.3 The

program then generates a random value of the slide position,

3Referring back to Figure 16, the base of the manipulator is
sometimes referred to as the waist and Joint 1 retation would be at
the waist. Joint 2 then corresponds to a shoulder joint. Joint 3
is referred to as the elbow joint. With this terminology, when
viewing the robot, four possible arm configurations are possible:
"lefty-elbow up", "lefty-elbow down", "righty elbow up", and
"righty-elbow down". The manipulator is shown in "lefty-elbow down
configuration in Figure 24.
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x coordinate of the end effector, and the ZXSSQ option

parameters are assigned appropriate values. ZXSSQ is then

called to compute the inverse kinematic solution as described

in the preceding section. A modified version of the subroutine

PUMAARM utilized previously in the program CID6 is then

incorporated in the program as the ZXSSQ user supplied

subroutine for calculation of the forward solution and

evaluation of the error functions. Upon termination of ZXSSQ,

the program provides capability for noise injection on both

the three coordinates and the joint variables. The simulated

joint variables and end effector coordinates are then written

to a file titled PUMAPOS.DAT. The preceding process is

repeated until the desired amount of simulated data has been

generated.

c. The Program BID6

The only significant modification to previously

described versions of ID6 is to the ZXSSQ user supplied

subroutine PUMAARM. Additionally, modifications due to the

changes in the number of identifiable parameters of the model,

such as the size and makeup of the x vector, are incorporated

into BID6. The modification to PUMAARM is similar to that

used in BLINSC. Since only the position of FI is identifiable,

only three error functions can be calculated for each

measurement set which, in this case, is the measured x, y and

z position and the associated joint variables for that

position. The error functions are the difference between the
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calculated position of FF based on the current value of all

parameters and joint variables and the measured position.

After execution of ZXSSQ, the calibrated parameters are

written to a file RESULT.DAT as before. Additionally, the

known position error only is calculated and written to

RESULT.DAT.

d. The Program BVERIFY

As a final test of the accuracy of this method,

the program VERIFY described for the CMM experiment was

modified. BVERIFY computes a forward solution based on the

actual model parameters and the calibrated parameters, and

compares the resulting poses. To compute the actual pose,

BVERIFY reads file INPUT.DAT and, as before, adds the length

and angular offsets to the appropriate kinematic parameters.

The calibrated kinematic parameter table is read from the file

RESULT.DAT. Two separate forward solutions are calculated

based on the two sets of kinematic parameters and sets of

random joint angles produced by BLINSC and read from a renamed

file POSVER.DAT. An average position error is calculated from

the difference between the position entries of the two T'

matrices resulting from the forward kinematic solution

calculations.

5. Experiment

a. Data Acquisition

With the CMM base rigidly affixed to the ramp and

the ramp secured to the table, the upper ball joint flange is
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bolted to the PUMA end effector flange and the end effector

positioned above the slide by use of the teach pendant. With

one operator supporting the PUMA, a second operator places the

manipulator in "free" mode. The manipulator is then maneuvered

into position so that the lower ball joint flange can be

bolted to the X carriage of the CMM. Once the lower flange is

bolted, the carriage is placed at a predetermined location and

the display unit readout zeroed. This location with respect to

approximate location of the base or zero frame of the

manipulator is measured and recorded for incorporation into

the kinematic parameter table along with the ramp rientation

and the ball joint position and orientation with respect to

frame 5 of the manipulator.

At the zero position and nine other positions

located at approximately 80 mm intervals, four separate sets

of measurements were recorded. The position for each set

remained fixed by tightening the provided thumbscrew onto one

of the guide bars. The manipulator was then maneuvered into

four widely varying configurations and the joint variables for

each configuration recorded. After completion of the 40

measurements, the end effector was unbolted and then joint one

was rotated to the other arm configuration. A second set of

measurements in the second arm configuration were recorded.

b. Parameter Identification and Verification

The entire set of 80 measurements were then used

by an experimental version of BID6 for actual parameter
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identification. Table 6 lists the nominal and calibrated

parameters for this method. As before, length and angular

parameters are reported in units of milli-meters and degrees,

respectively. As in the CMM experiment, the data was then

split into two groups for verification. The resulting

positional error was 0.744 mn.

TABLE 6. NOMINAL AND CALIBRATED KINEMATIC PARAMETERS

Nominal Calibrated

195.0 194.903
6, -30.0 -30.887

x, -180.0 -179.567

yM -380.0 -378.528

ZM 360.0 355.635

a, 0.0 -0.096

a, -90.0 -89.823

602 0.0 -0.340

a2  431.85 431.123

(2 0.0 0.580
13 0.0 0.485

66)3 0.0 -0.993

d3  149.09 146.028

a3  -20.33 -20.255

a, 90.0 90.415

60, 0.0 -1.089

d, 433.0 434.095

a, 0.0 0.074

a, -90.0 -90.244

605 0.0 1.293

d, 0.0 -0.863

a, 0.0 -0.175

a 90.0 89.905

OE -41.0 -41.355

x, 78.0 78.404

z_ 79.0 79.203
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C. THE WIRE POTENTIOMETER METHOD

1. Introduction

Calibration of PUMA 560 was performed by Driels [Ref.

12] utilizing an instrument referred to as a ball bar. The

instrument consisted of a rigid bar of known fixed length with

a ball joint attached at each end. One end of the ball bar was

affixed to a work surface within the working volume of the

PUMA. The other ball joint was attached to the end effector

flange of the robot. The method offered several advantages

including:

- precise length measurements

- essentially no measurement noise

- ease of fabrication

- low cost

The major disadvantages with the method are:

- Calibration can only be performed on a manipulator with
a "free" mode of operation.

- The method requires at least two operators so that the
manipulator is supported while collecting data.

- The end effector, and hence data collection, is limited
to the surface of a sphere of ball bar length radius
which may limit its applicability in certain
environments.

The wire potentiometer method was developed to retain

the advantages of the ball bar method while overcoming the

disadvantages which arise from constraining the manipulator

end effector.
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2. Physical Description of the Measurement System

a. The Wire Potentiometer

The wire potentiometer used in this experiment is

a Celesco model, DV301-0050-111-III0, and is illustrated in

Figure 28. This model is designed to produce linear

displacement and velocity measurements with a maximum travel

of 50 inches. The calibration process is only concerned with

displacement measurements which are transduced by means of a

proportional resistance from the wiper arm of 0-500 n

potentiometer.

Figure 28. Celesco Wire Potentiometer

b. Fixture Design for Measurements in a Volume

As noted above, the wire potentiometer was

designed for measurement of linear motion. To effectively
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utilize this device in a calibration application, it was

necessary to design a fixture capable of measuring distances

within a working volume. Several factors were considered when

designing the fixtures:

- simplicity

- low measurement noise

- prevention of wear and deformation of the wire

- mathematic modelling

The fixture designs for the measurement systen base and end

effector are illustrated in Figures 29 and 30, respectively.

I * -

Figure 29. Measurement System Base

All parts were constructed from aluminum. The

funnel shaped ports were cut with a carbide tipped half-inch

radius beading router bit. The known radius of curvature of
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Figure 30. End Effector Fixture

the funnel surface can easily be incorporated into a

mathematical model, as well as reduce the possibility of wire

deformation. The funnel surfaces are highly polished, which

reduces both abrasive wear on the wire and measurement noise

by allowing the wire under tension to align itself in a

minimum length configuration. A detailed description of the

geometry and wire length calculation is provided in the

following section. A tradeoff between smooth travel and

minimal play at the throat of the funnel was made when

determining the internal passage diameter.
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3. Theory

a. Closed Chain Kinematic Model

As in the two preceding experiments, the

manipulator kinematic parameters are the same as those listed

in Table 1. The measurement system kinematic model must be

developed so that the makeup of FTM and FE are known which then

fixes the identifiable parameters in TM° and T5E. If the wire

had been "perfectly flexible in bending", then instead of the

funnel shaped port, the wire could have been passed through a

fixture with a port of essentially equal diameter as the wire,

as illustrated in the planar view of Figure 31.

Bending" Wire

8-
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In this case, the model resembles the ball joint

model described previously. Point 0 in Figure 31 is fixed in

translation but the wire is "free" to assume any orientation

above the fixture. Point 0 could then be defined as the

measurement system reference point. With a similar fixture

mounted on the end effector flange of the PUMA, a second point

would be defined. This point becomes the origin of FE.

Summarizing, F' and FE consist of well defined points in space

but no axes can be associated with the measurement system. The

same concepts hold for the funnel shaped ports with the

defined point now located at the throat of the funnel.

However, due to the axial symmetry of the funnel, an axis can

be associated with the F and FE as illustrated in Figure 32.

This theoretically identifiable axis was not included in the

model used in this experiment based on the following

assumptions:

- The z axis illustrated in Figure 31 for the measurement
system base and end effector fixtures would be nominally
aligned with the z, and z, axis respectively.

- The small radius of curvature would make identification of
any nonalignment unreliable.

- Any errors induced would be sufficiently small that they

would not be discernible from normal meazuremeixt noise.

Without the axes included in the model, three parameters are

identifiable in both TO and TE. As stated before, any three

of the six parameters in each transformation can be used as

long as one parameter is a translation. The nominal values of

the parameters chosen for identification are typed in bold in
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Figure 32. Axis Defined by Funnel Geometry

the kinematic parameter table, Table 7. Recall that although

an independent set of axes are not defined at either F" and FE,

by virtue of the transformations, a dependant set of axes is

defined and can be referenced.

As developed, the total model consists of 24

identifiable parameters. For a given configuration of the

manipulator, the measured quantity is the length of wire

between the origins of F* and Ft. Therefore, in the absence of

noise, a minimum of 24 measurements are required to adequately

define the problem.
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TABLE 7. KINEMATIC PARAMETER TABLE FOR T,0 AND T,"

Tm°  T5F

0.0 -135.0

S0.0 0.0

0.0 0.0

x -75.0 -76.2

y -711.0 0.0

z 552.0 76.2

b. Calculation of Wire Length from Kinematic

Parameters

During each iteration in the parameter

identification algorithm, a "predicted" value of the wire

length based on the current value of the parameters must be

computed for comparison. The position and orientation of the

end effector fixzure reference frame with respect to the

measurement frame is provided, as before, by the TE matrix.

As noted earlier, the wire under tension will

align itself in a minimum length configuration between the

base fixture and the end effector fixture. In this

configuration, the wire departs the funnel surfaces

tangentially and in a direction such that the tangent to
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tangent distance is minimum. Figure 33 illustrates the wire

configuration for an arbitrary manipulator pose.

/S

//

/"
U~/

Ih

Figure 33. Drawing of Base and End Effector Fixture

Let M and E designate the origins of the

measurement and end effector frames respectively. Define TM
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and TE as the points of departure of the wire from the

measurement base fixture and end effector fixture

respectively. Note that the wire departs at points TM and TE

tangentially from the funnel surface and will be referred to

as the tangent points for the remainder of this discussion.

Additionally, define the z axes for F' and FE to lie along the

axis of the funnel as shown previously in Figure 32. The

complexity of describing the wire path can be simplified

somewhat by noting the following feature. If the wire path is

projected onto the x-y plane of F*' and FE then, as is shown in

Figure 34, the projected paths M-TM-TE and E-TE-TM in each

frame's x-y plane is a straight line. Only in unique

configurations, namely each frame's z axes intersect, will the

projected path M-TM-TE-E form a straight line.

The geometry described in this paragraph is

identical for either frame so without loss of generality F" is

described. Let v define the axis in the xy plane of F" which

describes the line of action of the wire path projection as

shown in Figure 34. Figure 35 illustrates the geometry as

viewed in the vz plane of the frame. If the x and y

coordinates of the tangent point TM (tm and tmy) in Figure 35

are known, then tm, is fixed by the known radius of curvature.

Furthermore, the angle 0 can be determined which then results

in a solution for arc length O-TM. Additionally, the angle 0

can be calculated which then fully defines the direction of

line segment TM-TE. From this analysis, it is clear that the
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Figure 34. Projected Paths M-TM-TE and E-TE-Th

wire length solution is a function of the x and y components

of the tangent points of both fixtures.

L = L (tm x , tMy, te. , te Y) (43)

Although an analytical solution to this problem

most likely exists, it would clearly reduce to solving 4 non-

linear equations with the 4 unknowns ultimately requiring some

numerical technique to obtain a solution. Consequently, an

optimization scheme was chosen for the solution method at the
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Figure 35. V-Z Planar View of a Fixture

outset. The general approach was to develop a unit vector for

the tangential direction based on a variable x and y position

in each fixture's reference frame. The unit vector calculated

in the end effector; reference frame is then transformed into

measurement frame coordinates. These vectors are designated u,

and u, and their component by component sum will be zero when

the wire is in a minimum length configuration. The three sums
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form three functions to be minimized. However, as illustrated

with the simple example in Figure 36, alignment of these unit

tangent vectors alone does not sufficiently constrain the

problem. The additional constraint required is that the

tangent to tangent length TM-TE be minimized as well. A fourth

function consisting of the tangent to tangent length could

then be included for minimization. However, as stated thus

far, the problem is not proportional with three of the

functions ideally converging to zero, and the fourth

converging to a comparatively larger number. Scaling the

length function could reduce this problem to an acceptable

level. However, the following method eliminates all

disproportionate aspects between the functions to be

minimized.

Let u,, be the vector describing the line of action

between TM and TE as illustrated previously in Figure 36.

Calculation of u4, is easily accomplished utilizing the

coordinates of TM, and TEN. Now the component by component

difference between u, and u,, will be zero when the wire is in

a minimum length configuration. These component by component

differences can then form three additional functions to be

minimized. Note that the difference between u, and u,, would

have worked equally well. In normal problem statement form:

- Minimize: Z(f1 (x))2  i=1,2,...,6

- Over: x = [x,y, NxM, "YM

- f,, f2 and f, are the component by component sum of uN and
U8
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Figure 36. Possible Solution to Alignment of Tangent Vectors

- f,, f5 and f, are the component by component difference
between u, and ut

- Recall that the superscripts on the elements of x refer to
which frame the variables are associated with and the
subscript refers to which frame their numerical values are
referenced to.

With a numerical solution obtained, the wire length can easily

be computed from the components of x.
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To aid convergence, a good initial estimate of the

x and y coordinates for each frame are determined in the

following manner. A unit vector v directed from the

measurement frame origin to the end effector frame origin is

calculated from the x, y and z position elements of the TE

matrix. The initial x and y values in the measurement frame

are chosen as the funnel radius times the i and j components

of this unit vector. A unit vector directed from the end

effector reference frame origin to the measurement system

reference origin is simply -v. However, this vector must be

described in the end effector's reference frame. Calculation

of -v, is accomplished by Equation 44.

E = (T') - -v(44)

As in F, the initial x and y valup.s in FE are calculated by

multiplying the i and j components of -yE by the funnel

radius.

Given the initial or updated x and y coordinates

in frame coordinates, calculation of the tangent vector with

respect to that frame proceeis as follows and is identical for

both frames. As before, define an axis v that lies in the

frames x-y plane and intersects the point defined by the

current values of x and y and th frames origin. Figure 37 is

a view of the plane formed by the v and z axis. Point P has

coordinates (x,y,O) and point 0 is the frame origin. The

distance from 0 to P is found from Equation 45.

90



2

Figure 37. Second View of v-z Plane

Up-= V+yT (45)

The length of line segment OQ is equal to the radius, r, of

the funnel. Calculation of the side PQ of the right triangle

PQS is accomplished with Equation 46.

91



PQ = r - O- (46)

Since the length of SQ is the radius, then length SP is

calculated by Equation 47 and this value corresponds to the z

component of the current tangent point.

= - (47)

The angles 0 and 0 are calculated by

4' = sin-r ( )
r
_ (48)

PS0 =si-PS

The angle 0 will be used at convergence to calculate arclength

OS. The unit tangent vector, either uM or uE is calculated as

shown in Equation 49.

u x I+ v J+ O-Ptan k (49)
x, + yZ + (UZ5-an4))

4. Simulation

a. Introduction

The general simulation scheme is similar to the

preceding calibration methods. A flowchart of the scheme is

illustrated in Figure 38. The programs are listed in

Appendices D, E and F. Prior to a description of the main

programs .n the simulation process, the subroutines LENGTH and

MINLENTH which calculate the wire length will be discussed.
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Figure 38. Wire Potentiometer Simulation Flowchart

b. Subroutines LENGTH and MINLENTH

The subroutine LENGTH and its subroutine MINLENTH

are used in each simulation program as well as the

experimental version of WID6 and the program COMP which is

used to verify the accuracy of experimentally calibrated

parameters. The purpose of LENGTH is to calculate the wire

length based on the TE matrix supplied by the calling program.

LENGTH initializes the ZXSSQ option parameters and

calculates x,, the ZXSSQ variable vector, from the current

frame origins as described earlier. Upon termination of ZXSSQ,

the overall wire length is calculated and passed back to the

calling program. In program WID6, LENGTH is called from the

subroutine PUMAARM which is similar to previously described
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versions. Note that this represents an inner optimization

loop. Since FORTRAN is not a recursive language, a renamed

version of the ZXSSQ source code was required so that the

inner loop optimization could be performed.

MINLENTH is the "user supplied subroutine" called

by ZXSSQ. MINLENTH is passed the current value of x. The

tangent vectors u, and u, are calculated as well as u,,. The

coordinates of u, are transformed into F' coordinates and the

six error functions are formed. The tangent to tangent length

and the elevation angles 0 which are necessary for the total

wire length calculation are computed and passed to LENGTH upon

ZXSSQ convergence.

c. The Program Wire

The function of the program WIRE is to generate

simulated wire length and joint variable data. In a general

sense, it performs similarly to the previously described

programs JOINT and BLINSC. The nominal kinematic parameter

table, along with length and angular offsets, length and

angular noise levels, and the total number of simulated

measurements to be generated, are read from the file

INPUT.DAT. The length and angular offsets are added to the

corresponding nominal parameters. These values will be used in

forward kinematic solution calculations. Comparable to BLINSC,

data simulation will require an inverse kinematic solution.

Unlike BLINSC, the end effector pose must be constrained to

realistically match the actual experiment. In other words, as
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viewed from the end effector frame, the measurement system

base frame must lie above the x-y plane of FE.

The first step in the process is to establish the

origin of F'. This random point is developed using a spherical

coordinate approach where random values of 0, 0 and L,

illustrated in Figure 39, are constructed from scaled values

output from a Monte-Carlo random number generator. Note that

0 was maintained in the range 0°-80' and L was maintained in

the range of 100-1000 mm. The coordinates 0, 0 and L are then

converted to cartesian coordinates in the usual way. These

three values become part of the "desired" result of the

forward kinematic solution.

n

I /

Figure 39. Calculation of the Origin of F7
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To ensure that the z axis of F' was in a feasible

direction, constrained random values of the z axis direction

cosines were incorporated into the "desired" solution. This is

accomplished by first calculating a unit vector v directed

from the origin of FE to the origin of F1 in F' coordinates.

Note that if these values were then used as the direction

cosines for the z axis in TE, then the z axis would "point"

directly at the origin of Fr. These direction cosines are

randomly adjusted about this value by a maximum range of ±30 ° .

Denoting u as the unit vector made up of the perturbed

direction cosines, feasibility is checked by computing the dot

product of u and v which must be less than 900. These six

"desired" values correspond to the last two columns of the TE

matrix and are passed via common block to the subroutine

PUMAARM.

The ZXSSQ vector x, is then initialized along with

the ZXSSQ option parameters. Subroutine PUMAARM is called by

ZXSSQ to compute the error functions. As before, PUMAARM

computes the forward kinematic solution, TE, based on the

current joint variables contained in the vector x. The

difference between the upper right 3x2 elements of the

calculated TE matrix and the "desired" values form six

functions to be minimized.

After ZXSSQ termination, the residual is checked

to ensure validity of the calculated pose. If the solution is

valid, the wire length is calculated by a call to subroutine
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LENGTH. Random noise can be injected into the wire length and

joint variables at this point. The wire length and joint

variables are then written to a file PUMASOLN.DAT. The

process is then repeated until the requisite number of

simulated measurements have been generated.

d. The Program WID6

WID6 performs in a like manner to preceding

versions of ID6. Minor changes have been made to reflect the

differences in the identifiable parameters. The only

significant difference is in the subroutine PUMAARM.

In this experiment, the measurement consists of

the length of wire between F and FE which is a function of the

end efrector pose and the fixture geometry. For each call to

PUMAARM, a forward solution is calculated. With TE

calculated, the subroutine LENGTH is called and a

corresponding wire length is calculated as described

previously. The difference between the calculated wire length

and the simulated data wire length form a single error

function. This process is repeated until N error functions

have been calculated where N is the number of measurements in

the data set.

After ZXSSQ termination, the identified parameters

are compared, as before, with the known parameters and these

parameters and the rms position error are written to a file

RESULT.DAT.
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e. The Program WVERIFY

WVERIFY performs similarly to previous

verification programs. The kinematic parameter table is read

from the file RESULT.DAT. A second set of simulated joint

variable and wire length data, generated by WIRE, is read from

the file POSVER.DAT. A forward solution and then the

corresponding wire length is calculated for each set of joint

variables. The difference between the calculated lengths and

the corresponding simulated length measurements is computed.

An rms value for all errors is calculated and written to the

terminal screen.

5. Experiment

a. Calibration of the Potentiometer

A model SE-2000 signal conditioner and digital

display unit was provided with the wire potentiometer.

However, the digital display was only capable of 0.01 inch

accuracy which was inferior to the desired accuracy. The unit

does provide a conditioned 0-10 volt analog output for

displacement measurement. It was hoped that the potentiometer

was capable of greater precision so it was calibrated in the

following manner.

The end effector fixture was mounted in the chuck

of a lathe and the base fixture mounted to the lathe carriage.

The fixtures were aligned so that the wire was normal to both

fixture upper surfaces as illustrated in Figure 40. The

carriage was then positioned so that the upper fixture
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surfaces were in light contact. The potentiometer was

connected to the SE-2000 and the SE-2000 analog output was

connected to a 5 1/2 digit DVM. The "zero" was adjusted on the

SE-2000 for a zero volt reading on the DVM. Digital display,

accurate tc 0.001 mm, of lathe carriage travel is provided by

an Acurite III display unit. Voltage and length readings were

recorded at 50 mm intervals. Figure 41 is a Displacemnt vs

Voltage plot of the data. As shown, a linear relationship

results and Equation 50 is the linear best fit of the data.

Figure 42 is a plot of the deviation of the data from the

linear best fit over the length of the wire. The rms error in

the deviation from Equation 50 is 0.22 mm. Although the

potentiometer was not nearly as precise as desired, simulation

with this level of noise still demonstrated robust convergence

with the overall error approaching the accuracy of the

measurement device which is less than the repeatability of the

PUMA.

L = 0.12659V- 0.490203 (50)

b. Data Acquisition

A short data acquisition program was written to

convert voltage measurements to millimeters using the linear

relationship derived from the potentiometer calibration. This

file then stored each measurement along with the corresponding

joint variable data in a file titled PUMAPOS.DAT.
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Figure 40. Calibration of the Potentiometer

The base fixture was secured to the work table as

illustrated in Figure 43. As in the calibration setup, the

potentiometer was connected to the SE-2000, and the analog

output of that unit was connected to the 5 1/2 digit DVM.

After sufficient equipment warm-up and with the end effector

fixture resting on the base fixture, the voltage output was

adjusted for a zero reading. The end effector fixture was then

bolted to the PUMA. The PUMA was placed in a wide variety of

joint variable configurations and data recorded. The length of

the wire was sufficient to enable the PUMA to be placed in all

four "arm configurations". 110 measurements were taken in

approximately four hours by one operator entering data at a
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Figure 41. Plot of Wire Potentiometer Calibration Data

computer terminal and operating the PUMA with the teach

pendant.

c. Parameter Identification and Verification

The entire data set was used for parameter

identification in a version of WID6 modified for experimental

data. The nominal and identified kinematic parameters are

listed in Table 8 where the length and angular values are in

units of millimeters and degrees, respectively.
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Figure 42. Plot of Measurement Error vs Wire Length

102



tzid/t

Figure 43. Wire Potentiometer Calibration
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Table 8. NOMINAL AND CALIBRATED KINEMATIC PAKM(ETERS

Nominal Calibrated

x, -75.0 -75.118

yN -711.0 -724.381

Z, 552.0 544.183

a, 0.0 -0.489

a, -90.0 -89.944

602 0.0 -0.523

a2  431.85 431.958

a, 0.0 -0.023

B2  0.0 -0.037

603 0.0 -1.272

d, 149.09 149.340

a3  -20.33 -18.735

a, 90.0 90.125

60, 0.0 -0.906

d, 433.0 432.726

a, 0.0 0.229

a4  -90.0 -90.263

605 0.0 1.248

d, 0.0 -0.532

a5  0.0 0.136

a, 90.0 90.254

O -135.0 -131.712

x, -76.2 -75.914

76.2 76.392

The data was then divided into two set's of equal

size. The first set of data was used in WID6 for parameter

identification. The second set of data was used for

verification by computing a forward solution based on the

identified parameters and the second sets joint variables. A

set of wire lengths was calculated based on the forward

kinematic solution results. These wire lengths were then
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compared with their corresponding measured values and an rms

error of 0.490 mm was calculated.
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IV. DISCUSSION OF RESULTS

A. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS

All three calibration techniques resulted in an

improvement in the accuracy of the PUMA 560. The resulting

accuracy for each method is listed in Table 9.

Table 9. CALIBRATION ACCURACY

COORDINATE MODIFIED LINEAR WIRE

MEASURING MACHINE SLIDE POTENTIOMETER

0.3 mm 0.744 mm 0.490 mm

Only the 18 parameters of the PUMA are common to each

method's closed chain kinematic model. The calibrated values

for each method along with the nominal parameters are listed

in Table 10 where the length and angular parameters have units

of millimeters an,' degrees respectively. It should be noted

that since the actual values are unknown, little can be gained

by direct comparison of parameter values. Additionally,

repairs were affected to the manipulator between the CMM

experiment and the other two methods. The abbreviations CMM,

MLS and WP are used in the column headings for the Coordinate

Measuring Machine, Modified Linear Slide and Wire

Potentiometer methods respectively.
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TABLE 10. CALIBRATED PARAMETERS

NOMINAL CMM MLS WP

a, 0.00 -0.049 -0.096 -0.489

a, -90.00 -89.998 -89.823 -89.944

682 0.00 -0.489 -0.340 -0.523

a2  431.85 432.122 431.123 431.958

a2 0.00 -0.030 0.580 -0.023

f3 0.00 -0.015 0.485 -0.037

60 0.00 -1.207 -0.993 -1.272

d, 149.09 149.146 146.028 149.340

a3  -20.33 -19.227 -20.255 -18.735

er 90.00 90.051 90.415 90.125

604 0.00 -0.914 -1.089 -0.906

4 433.00 432.889 434.095 432.726

a, 0.00 0.004 0.074 0.229

a, -90.00 -89.991 -90.244 -90.263

68 0.00 2.236 1.293 1.248

d, 0.00 -0.663 -0.863 -0.532

a, 0.00 -0.026 -0.175 0.136

_ _ 90.00 89.934 89.905 90.254

Since all three methods resulted in an accuracy

approaching or equalling the repeatability of the manipulator,

other factors take on added significance when making

comparisons. Some of these factors are somewhat qualitative

and they are discussed in the following paragraphs.

Although the CMM base was used for the Modified Linear

Slide method, it was used to simulate a device which is

assumed could be manufactured with similar measurement
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accuracy and characteristics but at a lower cost. With this in

mind, the CMM is clearly the most expensive method of the

three. The Wire Potentiometer Method is certainly the least

expensive.

The compact size of the Wire Potentiometer fixtures make

them very portable and durable and hence, well suited to an

industrial enviroment. The CMM on the other hand, is clearly

better suited for laboratory applications. The Linear Slide,

as it did in terms of cost, would seem to fall somewhere

between the other two methods. Although a rugged device could

be designed, the need for a stiff slide would result in a loss

of portability. A stiff slide is necessary to reduce noise

induced by flexure under the weight of the manipulator.

Both the CMM and Wire Potentiometer methods are capable of

measurements of the PUMA in all manipulator "arm

configurations" without any additional considerations.

Conversely, great care must be exercised when switching

between arm configurations when calibrating with the Modified

Linear Slide Method since the end effector must be detached.

Even with automated data acquisition of PUMA joint

variable data and CMM position data, it would still require

one operator nearly 10 minutes to measure one pose utilizing

the CMM. Two operators are required for the Modified Linear

Slide Method due to the need to support the PUMA while in Free

Mode. Automated data acquisition would greatly reduce the

overall time required for this method. The wire potentiometer
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method offers significant advantages in terms of data

acquisition as well. Automated data acquisition would

significantly reduce the amount of time required to gather

data. Additionally, the manipulator could be programmed to

move through a series of predetermined poses thus enabling the

entire process to be automated. The resulting calibration

would require only one operator about ten minutes to both set

up and dismantle the system. Furthermore, an extensive data

base could be collected in a manner of minutes without

operator intervention.

B. GENERAL OBSERVATIONS FROM EXPERIMENTS

The original Linear Slide method seemed to offer a number

of advantages over the CM method. Since the end effector is

fixed in orientation, six "knowns" are acquired for each

displacement measurement. In contrast, the CMM method requires

12 position measurements to "measure" full pose or acquire 6

knowns. Since each position measurement is made with the same

accuracy in both methods, it would seem that the Linear Slide

method offers a significant reduction in measurement noise.

However, the resulting calibration accuracy using the Linear

Slide was three times less than achieved with the CMM method

[Ref. 131. This "loss" of accuracy was attributed to

additional noise induced by internal loading effects, slide

flexure under the manipulator's weight and insufficient joint

variable excitation.

109



Two methods were considered for improving the joint

excitation. Appendix G describes a method for determining an

optimum position and orientation of the slide. Optimum in this

case is defined as a slide position and orientation which

results in maximum excursion of all six joint variables as the

end effector travels along the slide length. The Modified

Linear Slide method offered a significant improvement in joint

variable excitation although this method results in a

reduction by one half in the number of knowns for each

displacement measurement. Although this modification resulted

in improvement in the calibration ac-uracy, the accuracy was

still less than that achieved with the CMM method for

comparable sized data sets. This reduction in accuracy may be

a consequence of mechanical noise as suggested previously.

However, simulation studies by Pathre and Driels [Ref. 14]

suggest that trajectory or pathlike motion of the end effector

may result in a less accurate calibration than if random

motion of the end effector is utilized. This is an issue for

further research.

The Wire Potentiometer method would seem to support the

benefits of both large joint excitation and "randon" pose

measurements. Despite its noisy characteristics and

comparatively lower accuracy, a more accurate calibration was

achieved. This suggests that a tradeoff may exist when

considering mechanical constraining type measurement systems.

In general, additional end effector constraints increase the
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number of knowns for each manipulator pose as well as a

reduction in noise. However, the additional constraints

frequently result in a loss of some "dimension" of the problem

and a subsequent loss in calibration accuracy.

C. OBSERVATIONS REGARDING MEASUREMENT SYSTEMS WITHIN CLOSED

CHAIN KINEMATIC MODELS

1. INTRODUCTION

As stated earlier, the number of identifiable

parameters, N, in a "complete" manipulator kinematic model is

given by Equation 31 which is repeated here

N = 2 P + 4 R + 6 (51)

where P is the number of prismatic joints and R is the number

of rotary joints. For the PUMA 560, N is equal to 30. This

model assumes a reference frame external to the manipulator.

The advantage of this model is that it offers a convenient

method of referencing other objects and tools within the

working volume of the manipulator. However, a closed chain

kinematic model incorporating a measurement system or device

may not provide sufficient information to fully define a

"complete" model. Define is used in the sense that all the

parameters of the model are identifiable. In general, a

manipulator kinematic model incorporating a measurement system

will have no more than N identifiable parameters and clearly

a model with greater than N parameters contains parameters

unnecessary for "completeness".
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The process of determining the number of identifiable

parameters in models incorporating a variety of measurement

systems all to frequently results in an iterative process. For

the PUMA and a particular measuring system, the process

started with a 30 parameter model followed by simulation

studies which resulted in non-convergence if in fact

dependencies existed between parameters. The model was then

redefined by eliminating parameters based on the numerical

results, "first principles" analysis or intuition. Further

simulation studies were then conducted until the correct model

was developed. Clearly, a systematic approach, such as

Denavit-Hartenburg is to manipulator kinematics, would be

advantageous for modelling closed loop kinematic chains

incorporating different measurement systems.

The ambiguities which can exist are strictly

attributable to the measurement system. If the remainder of

the model is properly defined, then much of the difficulty is

eliminated. The general process is illustrated in Figure 44.

The process consists of properly defining a kinematic model of

the manipulator. Proper is used in the sense that the model

eliminates possible parameter dependencies in transformations

to frames external to the manipulator. From this point

forward, the term "manipulator kinematic model" or simply

"manipulator kinematics" will refer to such a model. The

proper kinematic model, in the same sense as before, of the

measurement system must then be defined. The transformations
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T0 and T _1E which connect the two models are then easily

defined.

MANIPULATOR
KINEMATICS

0 5TM TE
M E

MEASUREMENT
SYSTEM

KINEMATICS

Figure 44. General Model Development

2. Manipulator Kinematic Modelling

For general link to link transformations within a

manipulator, the Denavit-Hartenburg or Modified Denavit-

Hartenburg method provides a model in which all parameters are

ideutifiable. Care must be exercised though when defining both

the base frame of the manipulator and what is defined as the

"end" of the manipulator kinematics. For an n link

manipulator, the "end" of the manipulator kinematics should be

defined by frame n-l. This frame is chosen due to the fact

that it is the last frame uniquely defined by the manipulator

geometry. Recall though that prismatic joints may lead to
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ambiguity in this frame's location as well. A unique

manipulator base frame defined by the robots geometry is

required as well. For a rotary joint one, in which the joint

one axis is not parallel with joint axis two, this is

accomplished as described earlier for the PUMA. The resulting

transformation to frame one contains only two identifiable

parameters. It can be shown that a unique base frame can be

defined which results in a similar reduction in the number of

identifiable parameters by two in models with parallel or

nearly parallel joint axes one and two or a prismatic joint

one. This can also be seen by studying the development of

Equation 51 [Ref. 15]. The result is that the number of

identifiable parameters, K, in a manipulator kinematic model

as defined here is given by Equation 52 where P and R are

defined as before.

K = 2 P + 4 R - 6 (52)

For the six rotary joint PUMA 560, the number of identifiable

parameters is 18 as developed earlier and listed in Table 1.

3. Measurement System Modelling

The preceding model development and analysis leads to

a lower bound on the number of identifiable parameters in a

closed chain kinematics model incorporating a measurement

device or system. The last or end frame in a manipulator

kinematic model, F"', is a unique fixed frame for a given set

of joint variables. The base frame is also unique. Therefore,

six unique parameters, three rotations and three translations,
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are required to transform between the two frames. Any number

of parameters less than six would imply dependencies within

the manipulator kinematics which are known to be unique.

Therefore, the minimum number of parameters, M, in the closed

chain model is

M = 2 P 4 (53)

Summarizing, the number of identifiable parameters, n, in the

closed chain kinematic model is bounded by M and N.

M n N (54)

Applying Equation 54 to the PUMA, the number of identifiable

parameters is between 24 and 30 inclusive. In terms of the

measurement system kinematic, the foregoing states that the

model will consist of at least six and no more than 12

constraints.

4. Linking the Measurement and Manipulator Models

If the number of constraints in the measurement system

model is less than 12, then the model will contain geometric

quantities such as points or axes which can be thought of as

"reduced order frames". As described in the section Other

Special Cases, transformations between frames and "reduced

order frames" are easily developed and clearly indicate

dependant parameters.
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5. Case Studies

A number of calibration methods, both performed and

proposed, were studied in detail in order to redefine the

overall model in the form of Figure 44. Specific emphasis was

placed on the measurement system model development with a goal

of "standardizing" this process. Each method assumes

calibration of a PUMA 560 and thus the manipulator kinematic

model consists of the previously defined 18 parameters.

a. The Coordinate Measuring Machine

The Coordinate Measuring Machine method described

earlier was studied and the model was then developed in the

form of Figure 44. The measurement system, which consist of

the CMM and the precalibrated tooling ball end effector, are

illustrated in Figure 45 and its kinematic model is briefly

restated here. Since the orthogonal axes of the CMM

independently define a reference orientation and the position

measurements can be made with respect to a zero reference, an

independent reference frame is defined. Through a series of

position measurements of the calibrated tooling ball end

effector, full pose of the end effector is defined as well.

Therefore, the measurement system kinematic model consists of

two fully defined and independent frames for a total of 12

constraints.

All 12 parameters are identifiable in the

transformations linking the manipulator and the measurement

system and hence n=30 for the overall model. Table 11 lists
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Figure 45. Coordinate Measuring Machine and End Effector

the parameters of T,° and T5F which are all typed in bold since

all 12 are identifiable. Figure 46 illustrates the CHM closed

chain kinematic model.

b. The Ball Bar

The ball bar described earlier consist of a rigid

bar of fixed length with a ball joint mounted at each end and

is illustrated in Figure 47. One ball joint is fixed in the

manipulator's workspace and the other is attached to the

PUMA's end effector flange. Each ball joint has three

constraints, fixed translations, and consequently is capable

of defining a point. The three degrees of freedom, three

rotations, prevent associating an orientation at either joint.
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Figure 46. CMM Closed Chain Kinematic Model

Table 11. T, 0 and T,,' Kinematic Parameter Table

X, XE

YM YE

ZN Z

118



Consequently, the measurement system model simply consist of

two points.

End Effector ToInt "

Fixed Toint

Figure 47. Ball Bar

As noted earlier, three parameters are required to

transform from a frame to a point and one of these parameters

must be a translation. The overall model must then consist of

24 identifiable parameters. A logical choice of parameters for

identification are indicated in bold in Table 12. The

unidentifiable parameters of the RPYT transformation are

defined to be zero as indicated. The closed chain kinematic

model is illustrated in Figure 48.
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Figure 48. Ball Bar Kinematic Model

Table 12. TN0 and Tjt Kinematic Parameter Table

To T

0 0

o 0

X, X,

YM 0

ZN Z
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c. The Linear Slide

The linear slide measurement system consists of

the lower base assembly of the CMM. The y axis post is removed

and the PUMA end effector is bolted in this location. The PUMA

and slide are illustrated in Figure 49. The end effector

orientation, since it is bolted to the slide, is fixed. Motion

along the slide defines a direction. Relative displacement

measurements are available from the CMM display unit. However,

much like the prismatic joints in manipulator kinematics, no

specific point is defined by the geometry. In an analogous

fashion, an axis can be specified at the "next" or "last"

defined coordinate frame. Two choices are available, either

the PUMA base frame or frame 5. Defining the axis at frame 5

more closely resembles the physical system and so this frame

is chosen. This fixes FE coincident with F5. With an axis now

defined, a unique point on this axis can be defined by the

common normal between joint axis one and this axis. Another

fixed point on the axis is defined as well by the relative

displacement measurements. The origin of F' can be placed at

this point noting that only one direction or orientation

constraint is specified. Summarizing, the orientation of F' is

specified but its origin is not unique. The origin of F' is

specified as well as one orientation.

To transform from a frame to a point on axis

requires three translations (point to point) and two rotations

for an axis alignment. Since F' is coincident with F5, only
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Figure 49. The PUMA and Linear Slide

three rotations are necessary to transform between these two

frames. Therefore, eight parameters are necessary for the

transformations between the manipulator kinematics and the

measurement kinematics which results in a 26 parameter model.

Table 13 lists the parameters in these two transformations

with the identifiable parameters in bold and the

unidentifiable parameters defined to be zero as before. The

model is illustrated in Figure 50.
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Table 13. T," and T,' Kinematic Parameter Table

0 ijiE

00

YM  0

ZM 0

INTERNAL
o MANIPULATOR

KINEMATICS
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RPPYT(4,,,OOxxyOz)

M

Figure 50. Linear Slide Kinematic Model
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d. The Wire Potentiometer

The Wire Potentiometer method was described in

detail earlier and is briefly described here. The wire

potentiometer provides a resistance which is proportional to

the amount of wire extracted from the device. These devices

are designed for linear displacement measurements. In order to

provide displacement measurements in a volume, the two

fixtures illustrated in Figure 51 were designed. The funnel

shaped ports prevent wire deformation and each defines an

axis. The throat of the funnel defines a fixed point in a

similar fashion to a ball joint. Therefore, the measurement

system consists of two points and an axis through each.

As noted earlier, five parameters are required to

transform between a frame and a point on an axis. Therefore,

a model with 28 identifiable parameter results. Note that due

to the small size of the funnel ports used in the previously

described experiment, both axes were assumed not to be

identifiable. In this case, the model reduces to a 24

parameter model. Table 14 lists both the identifiable

parameters and unidentifiable as before for the 28 parameter

model. Note that other combinations are possible. Figure 52

illustrates the kinematic model.
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Table 14. TD and T,' Kinematic Parameter Table

XE

YM  YE
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Figure 52. Wire Potentiometer Kinematic Model
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e. Single Theodolite

Calibration of a PUMA 560 was performed by

Whitney, Lozinski and Rourke using a single theodolite [Ref.

16]. The single theodolite measurement system is composed of

a theodolite and a target fixed on the manipulators endpoint.

The theodolite is capable of accurately measuring an azimuth

and elevation angle of an object along its line of sight. The

target defines a point in space. The intersection of the

azimuth and elevation angles defines a point and since these

are measured with respect to a zero reference, a specific

orientation is defined at this point. This relationship is

illustrated in Figure 53. Summarizing, the measurement system

kinematic model consists of a point at FE and a fully defined

frame at Fm.

Six parameters are obviously necessary to

transform from F' to FO. The transformation TJF requires three

of parameters and as usual, one must be a translation. With

these 9 identifiable parameters, the resulting closed chain

kinematic model consists of 27 parameters. Table 15 lists one

possible combination of identifiable and unidentifiable

parameters. Figure 54 illustrates the kinematic model for the

single theodolite closed chain.
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Figure 54. Single Theodolite Kinematic Model

Table 15. T, 0 and TE Kinematic Parameter Table

T,40 T, E

6,, 0

yM  0

Z_ Z
E
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f. Three Wire Potentiometer

The three wire potentiometer method utilizes three

wire potentiometers placed in a known or calibrated triangular

arrangement. The end effector fixture consists of a triangular

shaped plate with three funnel shaped ports again placed in a

calibrated triangular arrangement. A sketch of the system is

shown in Figure 55. The known triangular arrangement defines

a frame at both the measurement system base and end effector.

XE1V

E

zI..

Figure 55. Three Wire Potentiometer Measurement System

With frames defined at both P and FE, the

resulting closed chain kinematic model contains all 30
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parameters of the "complete" model. The kinematic parameter

table for T," and T,1 is the same as Table 11 and the closed

chain kinematic model is the same as Figure 46.

g. Planar Motion

This measurement system consist of a smooth flat

plate placed in the manipulators workspace and an end effector

with a single precision tooling ball. The tooling ball is

placed in contact with the plate in a variety of joint

variable configurations and at arbitrary locations on the

plate. In this measurement system, the tooling ball defines a

point and this is the makeup of F. The "planar" motion of

this point defines a plane. A unique point can be defined at

the intersection of the plate "plane" and joint axis one. A

unique direction perpendicular to the plate is specified at

this point but no additional orientation is specified.

Consequently, r is composed of a point on an axis. Note that

FP lies on joint axis one.

Two rotations and one translation are required in

TM°. The rotations are necessary for axis alignment and then

the translation along joint axis one places Fr at FO. Three

parameters can be identified in TJE, a frame to point

transformation, and one of these must be a translation as

usual. The resulting closed chain kinematic model then

consists of 24 identifiable parameters. Table 16 indicates one

possible combination of identifiable parameters. Figure 56

depicts the closed chain kinematic model. If the tooling ball
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end effector of CMM method were used instead of a single

tooling ball, then a frame is defined at Fr and a 27 parameter

model results.

Table 16. TO and TE Kinematic Parameter Table

T. °  T5E

0. 0EoHo

o o

o o

0 0

ZM Z'
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Figure 56. Planar Motion Closed Chain Kinematic Model

6. Discussion of Case Studies

There are, in general, two broad categories of

measurement systems used in manipulator calibration:

- Those which mechanically constrain the manipulator

- Those which do not mechanically constrain the manipulator

The non-constraining type systems are typically easier to

model and these will be discussed first.

One reason that non-constraining type measurement

systems are usually easier to model is that a measurement

system reference frame is typically better defined. The second

reason is that the measured quantities are often the more

familiar cartesian or spherical coordinates of a point or

points on the end effector.
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Conversely, the location and any associated

orientation of a reference frame for constraining type

measurement systems is frequently not obvious. In fact, it is

often not defined until the position of the end effector frame

is defined. In this case, this frame is not really a reference

at all, but it is convenient for symmetry to refer to it as

such. Additionally, the measured quantities may consist of

some known spatial relationship such as a path or surface as

opposed to more familiar lengths and angular displacement.

Although no foolproof cookbook approach to model

development seems to exist, a set of guidelines can be

established. A generalized process for model development is

illustrated in the flowchart in Figure 57. The first step is

to determine which of the two broad categories the measurement

system belongs. Even this step is not always trivial since a

measurement system such as the wire potentiometer could be

arguably placed in either category.

As stated earlier, most non-constraining measurement

systems have relatively well defined reference frames.

However, it is noted that it is not a trivial task to define

why, for example, the CMM, which is a system of three

prismatic joints, establishes a unique reference frame even

though it seems quite obvious at first glance.

Once a reference frame is established, the end

effector frame is analyzed. Most non-constraining type

measurement systems measure points on the end effector in
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Figure 57. Measurement System Kinematic Model Development

either spherical or cartesian coordinates or can be modelled

in this fashion. It is not necessary for the point to be fully

defired to be modelled as such as in the case of the

theodolite. In this example, the azimuth and elevation angles

are known but the distance between the reference frame and the

point is unknown. If additional points or other geometric

factors are measured for each set of joint variables, then

135



full pose or at least some aspects of orientation can be

identified.

For constraining type measurement systems, it is

usually advantageous to analyze the end effector fixture

first. Analysis of the degrees of freedom of the end effector

fixture at an arbitrary point will begin to define the make-up

of F7. For example, the end effector fixture for the Linear

Slide method, which is essentially the x axis carriage of the

CMM, is fixed in orientation at any position along the slide.

In the Modified Linear Slide method, the ball joint allows

three rotational degrees of freedom. The degrees of freedom

for mechanical joints are easily identified and provide much

of the needed information. The result of this analysis may or

may not define a fixed point or location in space.

The next step is to analyze end effector motion as the

manipulator is varied through a series of measurements. Motion

along known paths or surfaces may further define FE or may

begin to define the location of F4. For example, a unique

reference point was established by the plane defined by end

effector motion in the Planar Motion calibration example.

At this point in the process, additional joints or

features of the measurement system should be identified.

Additional joints will likely establish the reference frame

origin. For example, the fixed ball joint in the Ball Bar

method or the funnel throat in the Wire Potentiometer method

define the origin of F". However, this point would already be
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established in the Ball Bar method by considering the

spherical surface traced out by end effector motion.

Specific or unique locations of each frame may be

defined when this step is reached. However, as in the case of

the Linear Slide method, no unique point in space is defined

by the measurement system considered alone since only a

direction is defined. As illustrated in the Linear Slide model

development, either F* or FE must be defined coincident with

either the manipulator base frame or the last defined frame of

the manipulator kinematic model. When this assignment is made,

additional parameters of the other measurement system frame

may be fixed based on geometric relationships.

Thz final step involves incorporating "instrumented"

information provided by the measurement system into the model.

For example, if a ball joint is "instrumented" to provide

elevation angle above some prescribed zero, then a specific

axis is specified at the ball joint origin.

The large scope of measurement systems and devices

capable of being used in manipulator calibration defies a more

rigorous algorithm for model development. However, the

preceding approach does provide a sound approach which will

result in a properly defined model.
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V. CONCLUSIONS

A. EXPERIMENTAL RESULTS

- A PUMA 560 manipulator can be calibrated using either one
of the three methods with a resulting accuracy which
approaches or equals the repeatability of 0.3 mm.

- The Coordinate Measuring Machine calibration method will
identify the "complete" 30 parameter kinematic model with
a resulting accuracy of 0.3 mm.

- The Modified Linear Slide method will identify 26
parameters with a resulting accuracy of 0.74 mm.

- The Wire Potentiometer will identify 24 parameters with a
resulting accuracy of 0.49 mm.

- The Modified Linear Slide method did result in a more
accurate calibration, 0.74 mm, than the Linear Slide
method, 0.9 mm, which emphasizes the need for large joint
variable excitation.

- The lower calibration accuracy achieved with the Linear
Slide Method as compared to the less accurate Wire
Potentiometer supports the theory that "random" poses are
more desirable than poses restricted to paths or
trajectories regardless of joint excitation.

- The Wire Potentiometer method provides an accurate,
inexpensive, portable calibration device which is easily
automated and capable of rapid calibration of a large
class of manipulators.

B. MEASUREMENT SYSTEMS WITHIN CLOSED CHAIN KINEMATIC MODELS

- A manipulator kinematic model can be developed which will
exhibit no parameter dependancies within transformations
to external reference frames

- The number of identifiable parameters of a typical serial
link manipulator in a closed chain kinematic model is
given by Equation 52 and for the PUMA 560 the number of
parameters is 18.

- The process of developing closed chain kinematic models
with embedded measurement systems for parameter
identification can be divided into three separate tasks:
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Develop the "manipulator kinematic model"; Develop the
"measurement system kinematic model"; Link the two models
using only the required parameters of a RPYT
transformation.

No comprehensive algorithm for measurement system
kinematic model development exists due to the wide variety
of measurement systems which can be employed. However,
some useful guidelines may be employed.
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APPENDIX A

PROGRAM BLINSC

C This program generates sets of joint angles for the Puma manipulator
C arm. It assumes that the tool frame of the manipulator is
C constrained to move in the positive x direction only. The
C tool is constrained by a ball joint mounted to a sliding linear scale.
C The values along the x direction are generated by a random number
C generator.

INTEGER LDFJAC, H, N, OBS, NOBS
PAAETER (LDFJAC=3, N=LDFJAC, N=61

REAL*8 fiO, thO, siO, pxO, pvO, pzO
REAL*8 DTI, DT2, DT3, D'14, DT5
REAL*8 DDl, DD2, DD3, DD4, DD5
REAL*8 AMU, AA2, A.A3, AA4, A15
REAL*8 ALl, AL2, AL3, kL4, AL5
REAL*8 BLi, BL2, BL3, BL4, BL5
REAkL*8 DF6, F16, TH6, S16, PX6, PY6, P.76

REAL*8 RN1,RN2,RN3,RN4,RN5,RN6
REAL*8 RN7,RN8,RN9,RNlO,RNll,RNl2
REAkL*8 RNl3,RNl4,RNl5,RNl6,RNl7,RNl8

INTEGER INFER,IER,IOPr,NSIG,MAXFN
REAL*8 FJAC(LDFJAC,N), XJTJ((N+l)*N/2), XJAC(LDFJAC,N)
Rjkj*8 PARM(4), F(LDFJAC), WORK((5*N)±(2*H)±((N-1)*N/12))
REAkL*8 X(N)
REAL*8 KAGNX,MAGN1

EXTERNAL PUMAARM

INTEGER I, J, K, NOU
REAL*8 TDES(3), T(4,4), SCALE, DANGLE, DLENTB, NUM

COMMN /PDATA/ TDES, DANGLE, DLENTB, T
COMMON /KIN,' FJO,TBO,SIO,PXO,PYO,PZO
& DTl,DT2,DT3,DT4,DT5,
& ALl,AL2,AL3,AL4,AL5,
& Akl,AA2,AA3,AA4,A.)5,
& DD1,DD2,DD3,DD4,DD5,
&i BL1,BL2,BL3,BL4,BL5,
& DF6,TB6,SI6,PX6,PY6,PZ6
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C Initialize data variables

OBS=0

C open data files for input and output

OPEN (10, NAKE='PUNA-PCIS.D)AT', STATCS='NEil')
OPEN (9, NAME='INPUT.DAT', STATUS='OLD')

C Read input kinezatic data

READ (9,*)
READ (9,*) FIO,THO,SIO,PXO,PYO,P-0
READ (9,*) DTl,DDl,Akl,ALl,BLl
READ (9,*) DT2,DD2,AA2,AL2,BL2
READ (9,*) D73,DD3,AA3,AL3,BL3
READ (9,*) D1T4,DD4,AA4,AL4,BL4
R EA.D (9,*) D'5,DD5,AA5,AL4,BL5
READ (9,*)
R EAD (9,*) DF6,THE,SI6,PX6,PY6,P:6
READ (9,*)
REA (9,*) NOBS,NOC,DANGLE,DLENTH,MA.GNX,MAGNL

CLOSE (9)

C Adjust nominal values

FIO=IMtANGLE
Th0=THM~ANGLE
s1O=0.0
PXO=PXO+DLENTE
PYO=PYO+DLENTH
P'"O=PZQ±DLENTH

DTl=0.O
D'r2=DT2+DANGLE
D'r3=D'r3DANGL.E
IDT4=Di44DAlIGLE
DT5=T5+DANGLE

AL1=,kLl+DAINGLE
AL2=AL2+DKNGLE
AkL3=AL3+DANGLE
AL4=AL4+DAkNGLE
AkL5=AL5+DAIIGLE

AA1=AAl+DLEXTH
AA2=AA2+DLENTEH
AA3=AAk3+DLENTD
AA4=AA4+DLENTE
AA5=AA5+DLEIITH
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DDl=O.O
DD2=O.O
DD3=DD3.DLENTE
DD4=DD4+DLENTE
DD5=DD5+DLENTE

BLl=BLl
BL2=BL2+DANGLE
BL3=BL3
BL4=BL4
BL5=BL5

DF6=DF6DNGLE
TH6=TH6
S16=SI6
PX6=PX6+DLENTH
PY6=PY6
PZ6=P26+DLENTH

C Get random number seed

WRITE (6,*) 'Type in a 6-digit random number seed'
READ (5,*) ISEED

C Start of main loop

1010 OBS=OBS-1

C Set initial values of joint variables

X(1)=70.0
X(2)=o.o
X(3)=90.0
X(4)=O.O
X(5)=50.0
X(6)=90.0

C Get random slide lengths

1000 CALL RADO (ISEED,NMD
JrN=NJ *94o. 0

C Establish desired tool position

TDES(l)= KUM
TDES(2)= 0.0
ThES(3)= 0.0

C Call INSL ZXSSQ for inverse kinematic solution

NSIG=4
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EPS:O.O

DELTA=O.O
MAXFN=500
IOP=1l
IXJAC=LDFJAC

CALL ZXSSQ(PU)LARM,M,N,NSIG,EPS,DELTA,AXFN,IOPT,PAY, X,
& SSQ,F,XJAC,IXJAC,XJTJ,WORK,INFE,,IER

C Check for singularities

IF (SSQ .GT. 0.00001) GOTO 1000

C Print results to 2 decimal places

WRITE (6,*) OBS,SSQ

C Generate the randou noise

CALL RANDOM (ISEED,RN1)
CALL RANDOM (ISEED,RN2)
CALL RANDOM (ISEED,RN3)
CALL RANDOM (ISEED,RN4)
CALL RANDOM (ISEED,RN5)
CALL RANDOM (ISEED,RN6)
CALL RANDOM (ISEED,RN7)
CALL RAM (ISEED,RNSO
CALL RAIDOM (ISEED,RN9)

RNI = MAGNX * (2.0 * RNI - 1.0)
Bh2 = MAGNX * (2.0 * RN2 - 1.0)
RN3 = MAGNX * (2.0 * RN3 - 1.0)

RN4 = MAGNI * (2.0 * RN4 - 1.01
RN5 = MACNI * (2.0 * RN5 - 1.0)
RN6 = MAGNI * (2.0 * RN6 - 1.0)
RN7 = MAGNI * (2.0 * RN7 - 1.0)
RN8 = MACN * (2.0 * RN8 - 1.01
RN9 = MAGNI * (2.0 * RN9 - 1.0)

C Inject random noise

X(1) = X(1) + RN4
X(2) = 1(2) + RN5
X(3) = X(3) + RN6
X(4) = 1(4) + RN7
X(5) = X(5) + RN8
1(6) = X(6) + RN9

TDES(1)=TDES(I)-RN1
TDES(2)=TDS(2>) RN2
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TDES)=TDESi 3)+RN.

WRITE (10,') X(l),X(2),X(3 ,X(4),X(5),X(fE
%RITE (10,') TDESU1),TDES(2,TDESi3)
WRITE (10,')

C Continue for other slide positions

If (OBS .LT. NOBS GOTO 1010

CLOSE (10)

C

SUBROUTINE PUMA ARM (X,14,N,Fi

C This subroutine calculates the non-linear function for the use of
C the IMSL routine ZXSSQ. It is the inverse kinematic solution for
C the PUMA manipuator.

INTEGER N, N
REAkL'8 X(N), F(M)

INTEGER II, JJ
REAL*8 FIO, TEO, S10, PXO, PYO, P:c
REAL*8 DTI, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL *8 AA1, AA2, AA3, AA4, KA.5
REAL*8 ALl, AL2, AU3, AL4, kL5
REA'L*8 BLi, BL2, BL3, BL4, BL5
REAL*8 DF6, F16, TH6, S16, PX6, PY6, P7E

REAL*8 THl, TH2, TH3, TH4, TE5
RE.AL*8 T0(4,4), Tl(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL*8 T5(4,4), T6(4,4), trpy(4,4), txy:(4,4)
REAI.'8 TIMAT(4,4), T(4,4), td)4,4)

INTEGER I, J, K
REA.L*8 TDES(3), DANGLE, DLENTE, SCALE

COMMN /PDATA,/ TDES, DANGLE, DLENT, T
COMMON /KIN/ FIO,THO,SIO,PXO,PYO,PZ0

& D T1,DYT2,DT3,DT4,DT5,
i kL1,AL2,AL3,AL4,AL5,
& WA1AA2,AA3,Ak4,AA5,

& DD1,DD2,DD3,DD4,DD5,
& BLI,BL2,BL3,BL4,BL5,

& DF6,TH6,SI6,PX6,PY6,PZ6
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C Initialize the TIM.T matrix to an I matrix:

DATA TIMITi',O,O,O,O,1,0,O,O,O,1,0,O,O,O,l

SCALE=100.0

C Initialize the T matrix to an I matrix

DO II = 1,4
DO JJ = 1,4

I(II,JJ) = IIMATfII,3J

ENDX,

C Manipulator joint angles

THI = DTI + X(l)
TH2 = DT2 + X(2)
TH3 = I13 + X(3)
TR4 = D[T4 + X(4)
TE5 = Dr5 + X(5)
F16 = DF6 + X(61

C Compute the T matrices, TI thru T6:

CALL T3RPY (FIO,TBO,SIO,TRPY)
CALL T3XYZ (PXO,PYO,P20,TXY2)
CALL MATMULC (TO,TRPY,TXY:)

CALL TRANSFORM ( ALl, AAl, DDI, TIl, BLI, T1
CALL TRANSFORM ( AL2, AA2, DD2, TH2, BL2, T2
CALL TRANSFORM ( AL3, AA3, DD3, TH3, BL3, T3
CALL TRANSFORM AL4, AA4, DD4, TB4, BL4, T4
CALL TRANSFORM ( AL5, AA5, DD5, TR5, BL5, T5)

CALL 73RPY ( F16, TB6, S16, TRPY
CALL T3XYZ ( PX6, PY6, PZ6, TXY2
CALL KATMULC ( T6, TRPY, TXYZ )

C Compute the overall trarsformation, T:

CALL MKATL ( T, TO
CALL MATMULA ( T, TI)
CALL ATLA (T, T2 I
CALL MATMULA ( T, T3
CALL MATMULA ( T, T4
CALL MATMULA (T, T5)
CALL MATULA T, T6

C Calculate the function F
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Fil)=Tul,4)-TDES(I1
F(2)=T(2,4)
F13)=Ti3,4)

C Calculate residual and write to screen

SUM = 0.0
DO i=1,3

XSSQ=SU,-F( I)
ENDDO

6RITE (6,*) XSSQ

RETURN
END

C *****************************a******************************

SUBROUTINE RANDOP (X,Z)

C This subroutine generates random numbers in the ranqe 0-1
C using a supplied seed x, the returned r&ndoz number being z.

REAL FM, FY, Z
INTEGER A, X, I, M
DATA I 1

IF ( I .EQ. 0 ) GO TO 1000
1=0
M= 2 ** 20
FH= M
A= 2**10 3

1000 X= MOD( A*X ,M)
FX= X
Zz rx Y

RETURN
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APPENDIX B

PROGRAM BID6

C Robot Identification using the Non-linear Least Squares methlod for the modified linear slide method.
C Simulation data is read fcr, the PUNA manipulator from the data file PUMA-POS.DAT

C Change parameter LDFJAC to change the number of observations,
C set LDFJAC = 6 * Nuaber of observations

INTEGER LDFJAC, MM1, N, NN~, N, NSIG, MAXFN, IOPT, IXJAC, INFER, IER
PARAMETER (LDFJAC=3*lOO, MLDFJAC, NN=26)

REAL*8 FJACULFJAC,1), XJTJ((NN-l)*W21
REAL*8 PARM(4), F(LDFJAC), WORK( (5*NN)4(2*M+((NN+1)*NN!2n)
REAL*8 X(NN)
EXTERNAL PUMKAARM

REAL*8 DANGLE, DLENTB, TQ, DQ, EPS, DELTA, SSQ
REA*8 SQERR1, SQERR2

REAL*8 FIO,THO,SIo,PXo,PYO,P:o
REAL*8 DTI, DT2, DT3, DT4, DT5
REA.L*8 DI, DD2, DD3, DD4, DD5
REAL*8 AW, AA2, AA3, kA4, AA5
REAL*8 ALl, AL2, AL3, Al4, AL5
REAL*8 BLI, BL2, BL3, BL4, BL5
REAL*8 DF6, TR6, S16, PX6, PY6, P.76, F16

INTEGER I, J, K, NOBS, MAXNOBS
PARMETER (MXNOBS=360)
REAL*8 TET1(NAX1IOBS), TET2(MAX1IOBS), TET3(HAXNOBS)
REAL*8 TET4(MAXNOBS), TET5(MAXNOBSj, TET6(MAXNOBSi
REAL*B Th(3,NAX1OBS , SCALE
COMMON /PDATA/ NOBS, TN, SCALE,

4TETl, TFT2, TET3, TET4, TET5, TET6

C Open data files for inputs and results

OPEN (8, NAME:'RESULT.DAT', STATDS'INEW
OPEN (9, NAME='PUNA-POS.DAT', STATUS='OLD')
OPEN (lO,NAKE='INPUT.DAT', STATUS='OLD')

c Read input parameters

READ (1O,*)

READ (1O,*) FIO,THO,SIO,PXO,PYO,PZO
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READ (10,') D'r,DD1,A.l,ALl,BL1
READ (10,*) DT2,DD2,AA2,AL2,BL2
READ (10,*) DT3,DD3,AA3,AkL3,BL3
READ (10,*) D'4,DD4,AA4,KL4,BL4
READ (10,*) 1Y5,DD5,AA5,AL5,BL5
READ (10,*)
READ (1Q,*) DF6,TH6,SI6,PX6,PY6,PZ6
READ (10,*)
READ (10,*) NOBS,N,DANGLE,DLENTR,MGNX,NA.GNI

CLOSE (10)

C Initialize data variables

X(1)=FIO
X(2)=TEO
X(3)=PXO
X(4)=PYO
x(5)=PZIO

x 6) zAA1.
X(7)=Ail

X(8)=D,2
X (9) =kA2
X(10)=4L2
X (11) =BL2

X (12 ):IT3
X(13)=DD3
X(14 )=A.I3
X(15)=AL3

X(16)=DT4
X(17)=DD4
X(18)=AA4
X(19)=AL4

X (20) DrT5
X(21)=DD5
X(22)=AA5
X(23)=AL5

X(24h=DF6
X(25)=PX6
X(26)=P:6

C Read sivulated joint data and tool pose

DO =1, NOBS

READ (q*) TET1(J), TET2(J), TET3(J), TET4(J), TET5(J), TET6(J)
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READ (9,*) TH(l,J), TH(2,J), TPM3,Ji
READ (9,*)

ENDXO
CLOSE (9)

C Initialize scale for the angular rows of the Jacobian

SCALE=lOO.O

C Call IMSL routine for non-linear identification

NSIG=4
EPS=0.0
DELTA=0.0
MAXFN=l500
IOPT=l
IXJAC=LDFJAC
N=3*NOBS

CALL ZXSSQ(PUMkAM,N,N,NSIG,EPS,DELTA,MAXFN,IOPT,
P ARM X,SSQ,F,FJAC,IXJAC,XJTJ,WRK,INFER,IER

C Save results to data file

WRITE (8,*)
WRITE (8,*) 'rIO, THO, SIC, PXO, PYO, P.70'
WRITE f8,888) X(I), Xf2), 0.0, X(3), x(4), x(5)
WRITE (8,*)
WRITE (8,*) 'D'rl, DDl, AAl, ALl, BL11
WRITE (8,888) 0.0, 0.0, X(6), X(7), 0.0
WRITE (8,*)
WRITE (8,*) ID'12, DD2, AA2, AL2, BL2'
WRITE (8,888) X(8), 0.0, X(9), X(10), X(11)
WRITE (8,*)
WRITE (8,*) 'DT3, DD3, AA3, AL3, BL3'
WRITE (8,888) X(12), X(13), X(14), X(15), 0.0
WRITE (8,*)
WRITE (8,*) 'DT4, DD4, AA4, AL4, BL4'
WRITE (8,888) X(16), X(17), X(18), X(19), 0.0
WRITE (8,*)
WRITE (8,*) '1Y15, DD5, AA5, AL5, BL.5'
WRITE (8,888) X(20), X(21), X(22), X(23), 0.0
WRITE (8,*)
WRITE (8,*) 'DF6, TH6, S16, PX6, !'Y6, PZ61
WRITE (8,889) 1(24), 0.0, 0.0, X(25), 0.0, X(26)

888 FORMAT (5F12.5
889 FORMAT (6F12.5

C Calculate root sean square error in identification
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TQ = DANGLE

DQ =DLENTE

C Error in identification (angular parameters)

SQERRI =
& (FIO4TQ-X(l))**2 +(SIO4TQ-X(2))**2
& +(D'r3+TQ-X(12))**2 +(D'14+TQ-X(16))**2 +(D 5+TQ-X(20))**"
& +(AkLlTQ-X(8))**2 +(AL24TQ-X(ll))**2
4 +(AkL3+TQ-X(l5))**2 +(AL4+TQ-X(19fl**2 +(AkL5+TQ-X(23))**2
& +(BL2+TQ-X(ll))**2 +(DT12TQ-X(8))**2
& +(DF6±TQ-X(25))**2
SQERRI =DSQRT( SQERRl'113

C Error in identification (length parameters)

SQERR2
& (PXO+DQ-X(3))**2 +(PYO+DQ-X(4))**2 +(PZO+Dr -X(5))**2
& +(AAl+DQ-X(6))**2 +(AA2+DQ-X(9))**2
& +().A3+tXQ-X(l4))**2 +(AA4±DQ-X(18))**2 4IAA5±DQ-X(22))**2
& +(DD3+TXQ-X(l4))**2 +(DD4+DQ-X(18)l**2 +(DD5+DQ-X(22))**2
& +(PX64]QX(~X25))**2 +(PZ6.+DQ-X(26))**2
SQERR2 = DSQRT( SQERR2/113)

WRITE (8,*)
WRITE (8,*) IRKS PARKS (LENGTH), RMS PAWM (ANGLE)'
WRITE (8,*) SQERR2, SQERR1
WRITE (6,*) IRKS PARKS (LENGTEH,, RMS PARM (ANGLE)'
WRITE (6,*) SQERR2,SQERR1

WRITE (8,*)
WRITE (8,*) 'INFER, IER,NOBS,NSIG'
WRITE (8,*) INFER, IER,NOBS,NSIG
WRITE (6,*) 'INFER, IER,NOBS,NSIG'
WRITE (6,*) INFER, IER,NOBS,NSIG

WRITE (8,*)

CLOSE (8)

END

C **********************************

SUBROUTINE PUMA_AP (X, N, N, F)

C This subroutine calculates the non-linear function for the use of
C the IMSL routine DCIILSF. It is the forward kinematic solution for
C the PUMA manipulator.
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INTEGER M, N
RE.AL*8 X(N;, F(M
INTEGER II, JJ
RE.AL*8 FIO,TH0,SIO,PXO,PYO,P0,r
REA.L*8 DTI, DTd-, DT13, D114, D'T5
REAL*8 DDI1, DD2, DD3, DD4, DD5
REAL*8 AA1, Ar.2, A.A3, KA4, AA5
RU.L*8 ALI, A1,2, ADL, AL4, AL5
REAL*8 Bi, BL2, BL3, BL4, BL5
R.EkL*8 FIE, TB6, S16, PX6, PY6, PZ6, DF6

REAL*8 TElI, TH2, TH3, TH4, TE5
REAkL*8 T0(4,4), T1(4,4), T2(4,4), T3i4,4), T4(4,4)
REAL*8 T5(4,41, T6(4,4), TRPY(4,4), TIY:(4,41
RE.AL*8 TIMATI4,4), T14,4)
REAi*8 TIKN(4,4), TN.J(4,4), TDELTA(4,4)

INTEGER I, J, K, MOBS, MAXNOBS
PARAM4ETER (KAXNOBS=36O)
REAL*8 TET(MAXNOBS), TET2(MAXNOBS), TET3(MAXNOBSQ
REAL*8 TET4 (NAXNOBS), TET5(MAXNOBS), TET6( MAXNOBSi
REAL*8 TN(3,KAKNOBS), SCALE
COMMON /PDATA'/ NOBS, TH, SCAL E,

TETI, TET2, TET3, TET4, TET5, TET6

* C Initialize the TIMAT vatrix to an I matrix:

DATA TIMAT,,1,O,O,O,O,1,O,O,O,O,l,O,O,O,O,1'

C Set parameters for the sanipulator:

FIO=X(l)
THO=X(2)
S10=0.0
PXO=Xi3)
PYO=X( 4
PZO~xt5)

D'T1=O.O
DD1= 0.0
AA1=x(6)
ALI=W 7
BL1=O.O

IDr2=X(8)
DD2=O.O
AA2=X 9)
AL2=X(1O)
BL2=X(11U

DT3=X(12)
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DD3=X113)
kA3=X (14)
AL3=X 15)
BL3=0 .0

DT4=X(16)
DD4 =X (17 )
AA44(10S
AL4=X (19')
BL4=C .0

DT5=X (20)
DD54X(21)
AA5=X( 22 I
AL5=X 23)
BL5=O. 0

DF64 24
T1160. 0
S16=0.O0
PX6=X (25)
PY6=O.0
PZ64X)26)

C Loop MOBS times

K= 0
DO J = 1, NOES

C Initialize the T vatrix to an I iatrix

DO II =1.4
DO JJ = 1,4

T(II,JJ) = TIMAT(II,JJ)
ENDDO
ENDDO

C Manipulator joint angles

TH1 = DTI + TET1(J)
T112 = IYT2 + TET2(J)
TH3 =DT3 + TET3(J)
T14 =IYT4 + TET4()
TH5 = DT5 + TET5(J)
F16 = DF6 + TET6(J)

C Coupute the T vatrices, TI thru T6:

CALL T3RPY ( PO, THO, SIC, TRPY)
CALL T3XYZ (PXO, PYO, P:o, TXY:
CALL MATMULC ( TO, TRPY, TXY:)
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CALL TRANSFOPY, ( ALI, M, DDI, THI, BLI, TI
CALL TRANSFORM ( AL2, A)2, DD2, TE2, BL2, T2
CALL TRANSFORM AL3, AA3, DD3, TH3, BL3, T3
CALL TRANSFORM ( 4, AA4, DD4, TH4, BL4, T4
CALL TRANSFORM ( KL5, A.5, DD5, TH5, BL5, T5

CALL T3RPY ( F16, TH6, S16, TRPY
CALL T3XY: PX, PY6, P:6, TXY:
CAkLL MATMULC (T6, TRPY, TXY: )

C Compute the overall transformation, T:

CALL KATMU. ( T, TO
CALL KTKULA T, T1
CALL KATMULA T, T2
CALL ) U T KLk (T T3
CALL KAT MULk (T, T4
CALL MATKCL. ( T, T5
CALL ATMUL ( T, T6

C Get the "T-measured" matrix for this observation:

DO II 1,3
DO JJ 1,4
TMJ(II,JJ) = TH(II,JJ,J)

ENDXO
ENDDO

THJ(4,1) = 0.0
TMJ(4,2) = 0.0
TMJ 4,3) = 0.0
THJ(4,4) = 1.0

C Calculate the functions F

K=K4 1
K=K IFKI = T +I,4-MIJ

F K) = T(2,4)-TM(2,J)
K=K+I

F(K) = T(3,4)-TM(3,J)

C End the do-loop for counter J

ENDDO

C Write RKS error in F

XSSQzO.O
DO II=I,3*NOBS
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XSSQ=XSSQ.FdII)*F( II)
ENDDO

XER:SRT( SSQ'
WRITEE6,*l XE?.

RETURN

154



APPENDIX C

C **********************************

PROGRAM VERIFY

C This program generates the six-dof pose error for the PUMA manipulator.
C It contains the identified calibration parameters and the exact parameter.
C It uses a data tile of verification joint angle sets POSEVER.DAT, and the
C file RESULT.DAT from the program ID6.

INTEGER 1, J, K, NPOSES, N
REAL*8 DANGLE, DLENTH
REAL*8 DT(5),DD(5) ,AA(5),AL(5),BL(5),MEAS(6)
RE.AL*8 ErT(5),EDD(5),EAA(5),EAL(5),EBL(5),EMEAS(6)
REAL*8 EDF6,EFI6,ETH6,ESl6 ,EPX6,EPY6,EP:-6
REAL*8 THETA(1000,6), TDELTA(4,4)
REAL*8 TO(4,4), T1(4,4), T2(4,4), T3 4,4)
REAL*8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL*S TIMAT(4,4), T(4,4), ET(4,4)

REAL*8 DTl, DT2, DT3, DT4, DT5
REAL*8 DDl, DD2, DD3, DD4, DD5
REAL*8 AAlr AA2, A1A3, WA, A).5
RE.AL*8 ALl, AL2, AL3, AL4, AL5
REAL*8 BLl, BL2, BU3, BL4, BL5
REAL*8 DF6, F16, TH6, S16, PX6, PY6, P:6
REAL*8 XW, W~, ZW
COMM~ON TIF4AT,THEIA

C Initialize the TIMAT matrix to an I matrix:

DATA TIMkTil1,0,O,0,0,l,O,O,0,0,1,0,0,0,0,l:'

C Open data file

OPEN (9, NANME='POSET.P.DAT' ,STATUS='OLD')
OPEN (10, NANE='INPLT.DAT', STATUS='OLD'
OPEN (11, NAME='RESL'LT.DAT', STATUS='OLD')

C Read input parameters

READ (1O,*,
READ (10,*) MEAS(l) ,MEA.S(2) ,MEAS(3),MEASj4),HEAS(5),MEASI6)
READ) (l0,*) DT1,DD1k,AA,AL1,BL1
READ (l0,*) DT2,DD2,AJQ,kL2,BL2
READ (10,*) DT3,DD3,A.A3,AL3,BL3
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REID )10,*) DT4,DD4,AA4,AL4,BL4
READ (10,*) DT5,DD5,AA5,AkL5,BL5
R E.D )l0,*
REA.D lO0,*) DF6,TH6,S16,PX6,PY6,P.6
REAkD (10,*)
REAkD (10,*) NOBS,R,DAkNGLE,DLENTE,MAGNX,MAGNL

CLOSE (10)

C Read in joint angle sets for verification poses

NPOSES=NDBS

DO I=1,NPOSES
READ(9,*)
READ 9,i )THETA 1,1) ,TEETA( 1,2) ,THETA 1,3) ,THETA 1,4),

& THETA(I,5),THETA(I,6)
EN

CLOSE(9)

C Set exact link parameters for tbe uanipulator:

DO I=2,5
DTU:)DTLI)DNCLE

EKDDG

MEAS(1 =MEAS(1)-DLENTH
NE.AS(2)=NEAS(2)+DLENTH
MEAS(D =MEAS(3)+DLENTE
HEAS(4)=MEAS)44DLENTE
M F-,S (5 ) = H-1.S (5) +D L ENT H
MEAS(6)=HEAS(6J+DLENTE

AU L1=AI-DANGLE
AkL(2 =AL2+DA1NGLE
AL) 3)=AL3.DAliGLE
AL) 4)=AkL4+DANGLE
AU 5)=AL5.DAiGLE

AM1I) = A.A1 + DLENTB
AA(2) = AA2 + DLENTB
LA(3) = AA3 + DLENTH
AA(4) = kA4 + DLENTH
AA(5) = AA5 + DLENTX

DD)1) = DD1
DD(2) = DD2
DD)3) = DD3 + DLENTB
WD4) = DD4 + DLENTH
DM) = DD5 + DLENTB
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BLlI) = BLi
BL(2) BL2 +DANGLE
K13) = BL3
BL[4 ) BL4
BLi5i BL4

DF6 = DF6 +DANGLE
TH6 = TH6
SH = S16
PX6 = PHE t DLENTE
PY6 PY6
PH6 = P:-6 + DLE1IT

C Read in and set up estimated parameter table

READll1,*)
READt 11,*)
RE.ADill,*) EMU-.Scl),EMEAS(2),EMEkSt3)

DO I=1,5
REA.D 11, *)
RED; 11, *
READ ill,*. EDTl(h ,EDD(I),EAA(Ii,EAL(I),EBL(I)

ENDDO

READfll,*)
RD.D(ll,*)
REAkD(ll,*) EDF6,ETH6,ESIE,EPX6,EPY6,EP-6

C Main ioop through NPOSES joint angle sets

DO K=l,NPOSES

CALL FKS (K,MEAS,DT,AL,AA,DD,BL,F16,TH6,SI6,PX6,PY6,PZ6,T)
CALL FKS (K,ENEAS,EDT,EAL,EAA,EDD,EBL,EF16,ETE6,ES16,EPX6,

& EPY6,EPZ6,ET)

C Compute the differential tool matrix

CALL MATSUB(TDELTA,T,E.)

c Compute the pose errors

POSERP=SQRT(TDELTA(1,4)**2+TDELTA(2,4 )**24TDELTA( 3,4)**2)
ORERRl=(TDELTA(3,2)-TDELTA(2,3) )/'2
ORERR2=(TDELTA(1,3 -TDELTA(3,I) Y'2
ORERR3=(TDELTA(2,1)-TDELTA(1,2) ) /2
ORERR=sQRT(ORRRl**2+ORERR2**2+ORERR3**2)

c Update total error counts
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POSIEURP (POSEP. (K-1) (*PSTEPJ?) K
ORTERR=(QREPiK-1)*ORTERP,)

c End of main loop*

hRITEi6,*i 'Position error, orientation error'
h'RITEiE,*) POSTERR,OP.TERF
BlD

C *,***,**************************

SUBROUTINE FUS (N,NEAS,IDT,AL,AA,DD,BL,DF6,TH6,SI6,

PX6,PY6,Pz6,T

REAL*8 704,4), Tli4,4), 12(4,4), 73(4,4)
REAkL*S 14(4,4), T5A,4), TEt4,4), TRPY(4,4j, TXY7(4,4)
REAL*8 TIIUT4,4), T(4,4), dtj5),al(5),aa(5),dd(5),bl(5)
REAL*2 THETA.IlOOO,6),ANGi5),MELSf6i

COKMON TINAT,THE:A.

C Initialize the T matrix to an I zatrix:

DO J=114
DO 1-1,4

T J,K) = TIMKT:iJ,K)
E NL.'

END-,-

C Set up thE joint angles

DO I= 5
ANC I=THETAN,I,-D TIJ

ENDX

F16=,,-TAN,6 .DF6

C Compute th T matrices, TI thru T6:

CALL T3RPY (MNEAS1),MEAS(2),MEAS(3),T0j
CALL T3XYZ (KFAS4),KEAS(5),MEAS(6),TO)
CALL NATNCLC (TO,TRPY,TXY2)

CALL TRANSFORM (AL(l(,AA(1),DD('),MlG(1(,BL(l),T1(
CALL T RAN SFORM (AL(2),AA(2),DD(2),ANC(2),BL(2),Tl)
CALL TRANSFORM (AkL(3),AA(3),DD(3),ANG(3),BL(3),T'J
CALL TRANSFORM (AL(4),AA(4),DD(4),A1114),BLf4i,T1)
CALL TRANSFORM (AL(5),AA(5),DD(5),ANG(5'),BL(5),Tl)
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CALL T3RPY (FI6,Tfl6,SI6,TRPY
CALL T3XY1 (PX6,PY6,Pi2E,TXY:
CALL MATKLC (T6,TRPY1,TXY:-

C Coapute the overall transforutation, T:

CALL MAXMILk T, TC,
CALL MATMUU T , Ti
CALL KkMATWL. (T, T 2
CALL MATWJLk ( , T3I
CALL KATKUk i T, T4
CALL MAVE2 Lk T, TS
CALL Kk TK Lk T, T6

RETURN
END

C ******f**************************

159



APPENDIX D

PROGRAM WIRE

C This program generates a set of joint angles for the calibration
C of the PUMA zanipulator using a wire potentiometer attached to
C the end point of the zanipulator.

INTrEGER LDFJAC, M, N, obs, nobs
PARAMETER (LDFJAC=6, N=4DFJAC, N=6)

REAI*8 DT1, DT2, D'r3, D'14, DT5
REAL*8 DD1, DD2, DD3, DD4, DDS
REAL*8 AA1, AA2, A3, AA4, AA 5
REAL*8 ALl, AL2, AL3, AL4, AL5
REAL*8 BLi, BL2, BL3, BL4, BL5
REAL*8 DF6, F16, TH6, S16, PX6, PY6, P:6
REAL*8 Xi, YW, ZW
RE.AL*8 RUXY:(3),UXYZ(3),XY,DALPA,DBETA,DGMMA,AKtY
REAkL*8 PDIRCOS,NDIRCOS,PNGLBTWN ,NNGLBTWI

INTEGER INFER,IER,IOP'I,NSIG,MAXFN
REAL*8 FJAC(LDFJAC,fi, XJTJ((N.H1*N2i, XJAC(LDFJAC,Nt
REAL*& PARN4),F(LDFJAC), WOjK((5*Ni.(2*N)t((N-l)*N 2))

REAkL*S X(N),XD,YD,AA
RE.AL*8 R,PHIMAX,PEIMIN,THETAMAX,TBETANIN,PEI,TEETA.
REAL*8 IB,YB,ZB,SSQ,RR,MAGNX,MAGN1,QQ,PI
REAL*8 RAD,TX,GAMA,DPSI,DPHI,OT,OTX

EXTERNAL PUMR

REAL*8 OTTOP,OOP,T614,4)
INTEGER I, J, K
REAL*8 TDES(4,4), QMAX(6), QMIN(6), SCALE, DANGLE, DLENTH, NLY
C09040N/LEN' PI,R,T6,THETAU,THIETAL,TTP
COMMO0N /PDATA / DANGLE, DLENTB,nTES
COMMON /KIN/! DT1,D'T2,DT3,DT4,D15,
& kL1,AkL2,AkL3,kL4,AL5,
6 1A1,AAk2,AA3,AA4,AA5,
& DD1,DD2,DD3,DD4,DD5,
& BLI,BL2,BL3,BL4,BL5,
& X1WIYs,,zw,
& DF6,TH6,SI6,PX6,PY6,P26

RAD-25.4OdO, 2.OdO
PI=4.OdO*DATAN( 1.ODO)
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C Initialize data variables

OBS=O

C Open data files for input*

OPEN (10, NAMF='PEM-SOLN.DAT', STATES=INE '
OPEN (9, NME='INfP[.T.DA1', STATI 15'OL-D'

C Read input kineiatic data

READ (9,*)
READ (9,*) N, ,Z
READ (9,*) DTl,DD1,Akl,ALl,BLl
READ (9,*) DT2,DD2,AA2,AL2,BL:
READ (9,') DT3,DD3,AA3,AL1Z,BL-3
READ (9,*) DT4,DD4,AA4,AL4,BL4
READ (9,*) DT5,DD5,AJA5,AL5,BL5
READ (9,*)
READ (9,*' DF6,TH6,SIE,PX6,PY6,P:6
READ (9,')
READ 19,*) NOB3,QP,DA1-CLE,DLENTH,NACGNY,HACNI

CLOSE (9)

C Adjust nozinal values

XW=XW.DLENTH
Y~=YN-DLENTE

DT12=I7T2+DAN'CLE
DT3=:DT3tDANlGLE
DT4=1VT4+DANCLE
DT5 = X 5 +DANG TE

ALl =AL1+DA1KLE
AL2=AL? %LJGLE
AL3=AL3+DANGLE
AL4=A.L4 +DAN'ULE
AL5=AL5+DAIIGLE

AAl =AA1+DLENTH
AAk2=AA2+DLENTH
AA3=AA3+DLENTE
AA4=AA4+DLMNH
AA5=AA5+DLENTE

DD1 :DD1 +DLEMI
DD3=DD3*DLENTE
DNDD4MLENTH
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DD5=DD5-DLENThn

BL2=BL2+DANG.LE

DF6=DF6-DA.NGLE
PX6=PX6tDLEXTE
PZ6=PZ6+DLENTE

C Set limits on spherical coordinates

PHIWAX=90 .0
PHIMIN=0 .0
THETAMAX=0.0
THETAJ4IN=360 .0

C Get random number seed

WRITE (6,*) 'Type in a 6-digit random number seed'

RUJJ (5,*) ISEED

C Start of main loop

1010 OBS:OBS~l

C Set joint angles to zero

DO I=l,N
X(I) =0.0D0

ENDDO

C Get random spherical coordinats for end effector

1000 CALL RAIIO9 (ISEED,NUNi
PHI=PHIHIN ( PHIMAX-PHININ)*U
CALL RANDOM (ISEED,N TMi
THETA=THETANIN ( THETAMX-TEETANIN)*U
CALL RANDOM4 (ISEED,NUi
Q=100.0+900.0*NLUN

C Calculate end point of the manipulator

XB-Q*OSD( THETA) *SINDcPHI)
YB--Q*SIND(THETA)*SIND( PHI)
ZB-Q*COSD( PHI)

IF (ZB .LT. 50.0) GOTO 1000

C Calculate unit vector between base and end effector

ZYZ=DSQRT( XB**2+YB**2+ZB**2)
UXYZl1)=-XB XY
VXYZ(2,=-YBJxy
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UXYZ(3)=-ZBiXY:

C Calculate direction angles from direction cosines

DALPHA=DACOSdJXYZ(l)
DBETA=DACOS(UXYZ 2))
DGAHMA=DACOS(UXYZ 3))

C Perturb direction angles

33 CALL RANI(ISEED,NUYl
AM)= (0. SODO-NUN ) PI /6. OD0
RUXY% (1 )=DCOS( DALPHA±ANERi
CALL RLNDON(ISEED,UtJW
MM1= (0. 50D0-NUM) *PI/6. ODO

RUXYZ (3) DCOSDGAMA+ANUN)
CHECK=RUXYZ(1 )**2.+RUXYZ(3)**2
IF (CHECK .GT. 1.ODO) GOTO 33
PDIRC0S=DSQRT( l.ODO-RUXYZ (l)**2-RUXY(3)**2)
NDIRCOS=-PDIRCOS
PNGLBTWN=DACOS(UXY(l)*RXYZ()+UXYZ(2)*PDIRCOS±UXY(3)
6 *RUXYZ(3))
NNGLBTWN=DACOS(UXYZ(1)*RUXYZ) l)+UXYZ (2)*NDIRCOS+UXYZ(3)
& *RUX'YZ(3))
RUXYZ (2) =PDIRCOS
IF (DABS(PNGLBTihN) .GT. DABS(NNGLBTWN)) RUXYf2)=NDIRCOS

C Establish desired tool pose

DO 11=1,4
DO JJ=l,4

TDESii,jj=O.o
ENDDO

ENDDO

TDES(1,3)=RUXYZ(1)
TDES(2,3)=RUXYZ(2)
TDES(3,3)=RUXYZ(3)
TDES(1,4)=XB
TDES(Z2,4)=YB
TDES(3,4)=ZB
TDES4,4')=l.0

C Call IMSL ZXSSQ for inverse kinematic solution

NSIG-4
EPS=0.0
DELTA =0.0
KAXFN=500
IOPT=l
IXJAC=LDFJAC"
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CALL ZXSSQ(PUiL ARM, M, N,NSIG, EPS, DELTA, MAXN, IOPT, PAR, X,

& SSQ,F,XJAC,IXJAC,XJTJ,WORK,INFER,IERi

C Check for singularities

IF (SSQ .GT. 0.00001) GOTO 1000

C Compute wire length

CALL LENGTH(OTTPOP)

C Inject noise on wire length

CALL RANDOM(ISEED,NUN)
OTTPOP=OTTPOP+( (0.5-Nt4)*2.0)*MAGNX

C Write simulation data to file

WRITE(10,*)OTTPOP
WRITE (10,888) X(1), X(2), X(3), X(4), X(5), X(6)

888 FOR)(AT 6F12.3 )

C Continue for other end effector positions

IF (OBS .LT. NOBS) GOTO 1010

CLOSE (10)
END

C *

SUBROUTINE PUMKAR (X,M,N,F)

C This subroutine calculates the non-linear function for the use of
C the IMSL routine ZXSSQ. It is the forward kinematic solution for
C the PUMA manipulator.

INTEGER M, N
REkL*8 X(N), F(M)

INTEGER II, JJ
REAL*8 DTI, DT2, DT3, DT4, DT5
REAL*8 DDl, DD2, DD3, DD4, DD5
REAL*8 AAI, AA2, AA3, AA4, AA5
REAL*8 ALl, L2, AL3, AL4, AL5
REAL*8 BLI, BL2, BL3, BL4, BL5
REAL*8 DF6, F16, TH6, S16, PX6, PY6, PZ6
REAL*8 XW, YW, ZW

REAL*8 THI, TH2, TH3, TH4, TH5
REAL*8 T0(4,4), Tl(4,4), T2(4,4), T3(4,4), T4(4,4)
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REAL*8 T5(4,4), T6(4,4), TRPY(4,4), TYY.14,4)
REAL*& TIM JT 4,4), Ti 4,4) ,PI,THETAU,TBETAl.,TTP
REA.L*8 DISQ,DIS,SUM

IlIEGEP I, J, K
RE.AL*8 TDES(4,4), DANGLE, DLENTH, R

COMNOVLEN' PI,R,T,THETAU,THETkL,TTP
COMMON /PDATA'DAUGLE, DLENTH,TDES
COMMO0N /KIN, DT1,D'r2,DT3,DT4,DT5,
& AL1,AL2,AL3,AL4,AL5,
& AAl,AA2,AA3,AA4,AAk5,
& DD1,DD2,DD3,DD4,DD5,
& BL1,BL2,BL3,BL4,BL5,
& X WIZ
& DF6,TH6,SI6,PX6,PY6,PE6

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAkTj1,O,O,O,O,1,O,O,O,O,1,O,O,O,O,1.

C Initialize the T matrix to an I matrix
DO II =1,4
DO JJ = 1,4

ENDDO
ENDD0

C Manipulator joint angles

THl = DTI X(1)
TH2 = DT2 + XQ2
TE3 = DT3 + X(31
TH4 = IDT4 + X(4
TH5 = T5 + X(5)
F16 =DF6 + Xi6j

C Compute the T matrices, T1 thru T6:

CALL T3XYZ ( XW, YW, ZW, TO

CALL TRANSFORM UA~, AA1, DD1, THl, BLi, TI
CALL TRANISFORM (AL2, AA2, DD2, TH2, BL2, T2
CALL TRANISFORM (AL3, AA3, DD3, TH3, BL3, T3
CALL T RAN SFORM (AL4, AA4, DD4, TH4, BL4, T4
CALL TRANSFORM ( AL5, AA5, DD5, TH5, BL5, T5

CALL T3RPY F16, TEE, S16, TP.PY
CALL T3XYZ (PX6, PY6, PZ6, TXY1
CALL MATW.LC ( T6, TRPY, TXY: )
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C Compute the overall transforuation, T:

CALL IATULk. (1, TO
CALL NAMLA T , T1
CALL KATMUA (T, 12
CALL NATMULA T , 13
CALL KATMCL. T, 1,4
CALL MATMULA. T , T151
CALL MATMULA ( , 16

C Calculate the function F

F(2)=T12,4 -TDES 2,4)
F(3)=7(3,4)-TDES(3,4)
F(4)=(T(1,3)-TDES(1,3) )*100.0D0
F(5)=(Th2,3)-TDES(2,3fl*100.0DK
F(6)=fT(3,3)-TDE5(3,3) ,*l0O.ODC,

C Calculate residual

SUTM=O 0OX
DO IJKL=1,6

SUM=SUM-F IJKL*2
EKDD0
W'RTE6,*)DSQRTSUML 6.00Q

END

C

aLMDROCTINE RAkNDOC (x,z)

C This subroutine generates random nuibers in the range 0-1

C using a s~pplied seed x, the returned random number being z.

REAL FM, FX, Z
INTEGER A, X, 1, H
DATA I 1:

IF ( I EQ. 0 GO TO 1000
I =O
H= 2 ** 20

A 2**10 + 3

1000 X= NODi A*X M

FX X
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RETUF21
END

C *z,*z***w*****R*g******t********x*

C
C This subroutine calculates the length of wire between the end effector
C frame and measurement base frat. The subroutine utilizes IMSL routine
C ZYSS, for solution of the length along with, subroutine MINLENTE

SUBROUTINE LENCTI(OTTPOP)
RE '!*L*8 T6i4,4),T6-V* 4,4)
REAL*8 EPSN,DELTAN,FMARM),XN(4),SSQN,FN(6),XJACNt6,4)
REAL*8 WORKNA42),XJN(lO),XUL'VP(4)
INTEGER N ,NN,NSIrGN,KAXFNN, IOPTN ,IXJACN ,INFEPN,ITERN
REAL*8 PI,R,X,Y,Z.OCP-,"L 4,XU.'4),O,YO,P6r4),XCYQ
REAL*8 X6Y6,ZO,O'IUPOP,OTSCAL,O,XC4),TTP,TTPSCAL
REIL*8 THETA',nT4L
COM4ON 'LEN PI,R,T6,THETAU,TEETA.L,T-T?

EXTERNAL. MIN'LN:EH

C Set ZXSSQ parameters

MNz6

NSIGN=I
EPS=O. OrO
DELTAN=O .OY,

IOPTN 1

PI=4.ODO*DATANt l.OD2'i

R=12.705,

C Calculate initial values for ZSQvector Y

X=T61,4)
Y=T6r2,4)
Z=T63,4)
OOP=DSQPT y**2*Y**2./'**2)

C Calculate unit vector from base frame origin to end effector origin

XLU','l)=X 'OOP

XLUI2)=Y'OOP
XLUV(3)=Z/OOP
XLCUv'4)=.ODO

C Zero T6 inverse matrix
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DO 1=1,4
DO J=1,4

T611r,-I,J)=O.OD,^
ENDYX

ENIDO

C Compute inverse of T6 matrix

DO 1=1,3
DO J=1,3

EDDD

T6INV'(2,4)=T6IlF,'(2,4)-T6iI,4 *T6('I,2)
T6INW'(3,4)=T6IN?'(3,4 )-T6(I,4,*16 1,3,

END)DO

C Calculate coordinates of end effector unit vector in measuremelt
C frame coordinate

XUUV.P(2)=Y-XLU7.' 21
XU7,'P 3)=,:-XLUV,3;
XMlTP(4)=l.ODC,

C Conv~ert coordinates to end effector frame reference

DO I=1,4

DO 3=1,4
XULTI)=XUtT;(I)-T6Tw;,(I,J]*(XU 7vPiJ)

ENDDO

C Initialize "bXSSQ X vector

XNO i:XLUt Dl*P
XM~,-XLUV(2)*R
XN(3zXU1t)*R
X1(4:XUT;V(2)*R

C Call ZXSSQ for length calculation

CAkLL ZXSSQ(MTNLENH,MN,NN,NSIGN ,EPSN ,DELTA1,MXFNN, IOPTN,
PARMXN,SSQN,FN,XJACN,IXJACN,XJTJN,WORKN,INFERN,IERN)

OTTPOP= (THETAkL4THETAU )*R+TTP

RETURNi
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C
C
C

SUBRO:TrNE HINLElNTE(XN,MN,NN,FN)
INTEGER KN,NN
REAL*8 XN~ffN,F(N),ERROPE
REAkL*8 PI,R,X,Y,Z,,OOP,XLC,-(4),XUU'(4),XO,YO,P6(4),XOYO
REAL*8 X6Y6,ZO,OPTPSCAL,OPT,QTSCAL,OT,XC)4),TTP,TTPSCAj L
RLAL*8 T6(4,4),P6P(4),THfETAU,TEETALMAGUL,KkGUU,UXO
REAL*8 UYO,Uc.o,XUP(4),cIX6,UY6,U:.6,UXT,CYT,c:T,2oP
C09040H'LEN! PI,R,TE,THETAU,TEETAL,TTP

C Initialize variables based on current value of X

XO= XNl
YO=X[2
P6( l) =).3
P6 2) =XN 4
PP1)=P6 1)
PP2)=P61 2"

C Calculate length in each frames xy plane

XOYO=DSQRT( XO**2tYO**2

X6Y6=DSQRT P6(1)**2.P6I 2 *:,2)

C Calculate corresponding z value

P6)DSQPT2.ODO*R*X6Y6-P6 l)**2-P6(2,**2,)
2OrDSQRT) 2.ODO*R*XOYO-XO**2-YOx2)

C Calculate angle theta for arciength calculations

THETAU1=DASINfP6( 3 !P
THETAkL=DASINIKO Pj

C Calculate intermediate z value for unit tangent vectors

PEP( 3 =X6Y6*DTAN(PI!/2.ODO-TRETAU,
ZOP-XOYO*DTXkN I 2. ODO-THETkL)
MAGUL=DSQRT( XO**2+YO**24."OP**2)
MAGUU=DSQRT(P6P(1)**2+P6P)2)**2,P6P(3 **2)
UXO=XO/MAGUL
UYO=YO !MAGU:L
UZO= ZOP/WAGUL

C Transform unit vector in FE coordinates to FM coordinates

P6P (4)= 1. ODO
DO I=1,4
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DO J=1,4
XUP(I)=XUP T,.T61,J'P6PJ,

ENDX

C Transform FE tangent point to FM coordinate-:s

IX6=(XUP(l)-T6(l,4fl MACUU

UZ6=(XUP(31-T6(3,4)) 'M)GU7U

DO 1=1,4

DO J=1,4

C Calc.ulate tangenIt to tanaer. distan.-

C Calculate tangent point. to tangent point unit vector

CXT=(XU(11-XO),ITTP
UYT~fXID2;-YC,)T IP
,T= M 13) -ZCn 'TTP

C Calculate ziniiiin- fur--tiorcs

BN 1 UTUXC
FN 2) =U;T-UYC0
FNM3)=UCT-UKO
B1'4i=UXT-UH
FMc5)=CYT-&Y6
FN 6 =UT:6,'.'E

C Calculate residual and write to screen

ERROR =O.ODO
DO I=1,6

ERROR=ERROR + FN(I)**2
ENDDO
WRITE 6,' ERROF
RETURN
EXD
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APPENDIX E

PROGRAY. WID1E

C Robot Identification usinq the Non-linear Least Squares method.
C This version of prograt ID6 is for the wire potentiometer sethod.
C Simulation data is read for the PUHL. manipulator fror
C the data tile PUMK.-SOLN.DAT
C
C SET LDFJAC =NME OF OBSER'VA-TIONS

INTEGER LDFJAC, MM, N, N(N, N, NSIG, WkX.YFN, IOPT, TYJAC, INFHR, iE
IN71EGER I, J, K, NOBS, KU.N:-ES
PARAMETER (LDFJAC=55, MN4DFJAC, B=~24!
PARAMETER (NAYNOBS&200
REA.L*8 FJACtLDFJAC,NN;, XJTJ((NN1INN 2;
REAkL*8 PAPJ4), FiLDFJA, WRw)N 2NvN-; 12
REAL*8 X(NN,XD,YD,TX,DPS,GWtk,DPI,OT,rAD.I
REA-'L*8 DANGLE, DLENTE, TQ, KQ, EPS, DETA, SS5
RDAL*8 SQFRRl, SQERR2, PI

RIAL*S DT1, DT2, DT3, DT4, DT5S
REAL*8 DDI, DD2, 1)D3, DD4, DD5
REAL*8 Akl, AA2, AA3, .4 , A.!. 5
R UL' ALl, AL2, AL3, A114,AL
REAL*8 BLi, BL2, BL3, BL4, BL5
REAL*S F16, DF6, TH6, S16, PX6, P-1-, P:E
REA&L * 8 ).GNX,MAG"N.!
REAL*8 TETlCMAXNOBS), TET2MAkXNDKS, TET3NAXNOBS)
RE.AL*8 TET4(HAXNOBS), TET5fMAXNOBqi, TET61k.1YN3K-)
REAL*8 R,OTX1MAXNOBSQ
COMMON /PDATA' NOBS,TE~i,TET2,TET3,TET4,TET,TET,TX,.PD

COMMON /KIN' DTl,DT2,DT3,DT4,DTE,.
& AL1,AL2,AL3,AL4,AL5,
& AAl,AA2,AA3,AA4,AA5,
& DDl,DD2,DD3,DD4,DD5,

&BLl,BL2,BL3,BL4,BL5,

DF6,TH6,SI6,PX6,PY6,P26,PI

EXTERNAL PUMA ARJM

C Open data files for inputs and results

OPEN (8, NAME='RESULT.DAT', STATUS='NE ')
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OPEN (9, NME'PUHA-SOLN.DAT', STATUS='OLD'
OPEN (1O,NAMF='INP[UT.DAT', STI.TUS='OLD')

PI =4. ODO*DATAi; 1. OX)
RAD4-2.70DO

c Read input parameters

REAkD (1O,*l

RE-AD (10,*) DT1,DD1,AAI,AL1,BL1
READ (10, *) DITI, DL2,AA2, AL2, BL2
READ (10,*) DTI3, DD3,AU3, AD, BID
REAID (1O,*) DT4,DD4,kA4,KL4,BL4
REAJD (1O,*) DT5,DD-,,KA5,AL5,B5
READ (10,*'j
REAkD (10,*, DF6,TH6,SI6,PX6,Hi6,P:E
RED (10,*)
R Eli) 10,*i N0BS,QPP.,DkNG TE, DLFNTH,MAGN X, KICN:

CLOSE 1 10

C Initiali.7e data 'ariatles

X1 1 I=X

Xd 4

X~ 4

X(9)=BL2

X ( 10) =N3
X11D=DD3
X( 121=A.3
X(13 )=AL3

X(14)=DT4
X(15)=DD4
Xt16i=kA4
X(17)=AL4

X(18)=YE5
X(19)=DD5
X(20)=)AA5
1(21H=AL5
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Xi 22 i=DFE
X(23):PX6
V 24)=P:E

C Read joint data and wire lent.h.

DO J = 1, NOBS
R D (9,*j TET1(J), TET2,Ji, TET3 Ji, TET4(J), TET5(J), TET6(J

READ (9,*) OTXJ)
oTX(J=OTXJ )-25.40D,,
REL (9,*j

ENDX
CLOSE (9)

C Set parameters for IMSL routine ;XSSQ for non-linear identification

NSIC-4
EP5,Z .C
DL:TA.=0

IOP: 1
I XJAC LDFJ..C

CALL : xssz P:'3.k ,M ,N, NSi ,F3, D :T, .xF ,:c,?:,
& PARNM,X),SQ,F, FJAC, IXJAC, XJ, WOR:, INFER, I 1R

C Save results to data fii 'RES 'IT.D.AT"

WEF N ,*)

WEITE (8,931 Xi, Xi2i, Xi31

NTTE (6,'S 'D , DDI, Al, .ALl, BSI'
W&ITE (8,93 0.0, 0.0, Xi4, X 5k, 0.0
WRITE 8,'

WRITE (8,*' 'DT2, DD:, AA2, AL2, BL2'
WRITE (8,931 Xi6), 0.0, XT3, X), Xi9

RITE 18,*)
WRIT (8,' '1T3, DD3, A3, AL3, BL3'
WRITE (8,93) X(0), X(11), X(12), X13, 0.0
WRITE (8,*)
WRITE (8,*) 'IDT4, DD4, LA4, AL4, BL4'
WRITE (8,93) X(14), X(15), X(16), X(17, 0.0
WRITE (8,*)
WRITE (8,*) 'IDT5, DD5, KA5, A5, BL5'
WRITE (8,93) X(18), X(19), X(20), X(21), 0.0
WRI'E (8,*)
WRITE (8,*) ' D6, THE, S16, PX6, PY6, P16'
WRITE (8,93) X(22), 0.0, 0.0, X(23), 0.0, X(24

93 FORMAT(2X,6(18X,F1O. 4 ( 0
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WRITE (8,*1
WRITE (8,*) 'INFER., IEP,,NOBS,NSI''
WRITE (8,*) INFER, IER,NOBS,NSI.
WRITE 16,*) 'INFER, IER,NOBS,NSIC'
WRITE (6,*) INFER: IER,NOBS,NSIG
WR:TE (8,*)

CLOSE (8)

ENT'

C

SUBROLTINE PUNAAkRM (X, N, N, F)

C This subroutine calculates the non-linear function for the usae cf
C the INSL routine ZXSS;Q. It is the forward kinematic solution for
C the PLXk uanipuiatc-r.

INTEC-EP M, N
INT -E I, JJ

INTEGER I, J, F, NOLS, KAXNCXEiE
PARMETER AkAN:BKz2c:
REAL*S X(N), FiNl
RE ADr S VA, Y' , :
REAl*8 1Y 1, DT2, DT3, D74, DT5z
REAL*S DDl, DD2, D 3, DD4, DD5
RELL* AM!, L.A, D.3, AA4, J
REAL'S* ALI, k-1, AD, AL 4, AL 5
REAL*S BLl, B1.2, BL3, 8L4, BL5
REAL'S8 F16, DF6, THE, S16, PX6, PY6, P3-t
REAkL'S THIL, TH2, TH3, TH4, TH5
RE kL*S TOA ,4i, Tli4,4), T2(4,4), T314,4), T4A4,4)
REAL'8 T5(4,4), T6(4,4), TRPY(4,4), TXY:(4,4i
REAL*8 TINT4,4), Ti4,4,XT,YT,T,XC,Y,AA,Q^
REAL'S XD,YD,DPSI,RAD,GAO4A,DPHI,OT,TX,O).
REAL'S TETlIAUNOBSi, TE~tMAXNOBS), TET3AUNOBSi
RELL8 TET4(NAXNOBS), TET5(KkXNOBSi, TET6(MXNOBS!
REBAL'*S RR ,O'X(KAXNOBSi,PIK,mis,suzsq
REAkL'S OTTPOP,PI,R,OOP,TBETAU,TBETAL,TTP

COMMNON /PDATA NOBS,TET1,TET2,TET3,TET4,TET5,TET6,TX,R.D

COMMNON /KIN,/ DT1,DT2,DT3,DT4,DT5,
& AkL1,AL2,AL3,AL4,AL5,
& AAI,AA2,AA3,AA4,AA5,
& DD1,DD2,DD3,DD4,DD5,
& BLI,BL2,BL3,BL4,BL5,
6xw XW, ,

6DF6,TH6,SI6,PX6,PY6,PZ6,PI
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C Initialize the TIMAT matrix to an I matrix:

DATA TIM-T,I,0,0,C,0,IO,0,0,0,i,0,OOO,1

PIK:PI
C Set parameters for the manipulator:

N X(3

ALl XIS

DT2 = X( )
kk2 = Y;
A,2 = I 1

BL2 X

DD3 X ) i1i

AL3 X(13I

DD4 = X(15
A'4 = XILE,
AL4 = Xil-i

DD5 X(19

AL5 = X(21)

DF6 X(22)
PX6 X{21)
P:6 = X(241

C Loop MOBS times

K=O

DO J 1 1, NOBS

C Initialize tbe T matrix to an I matrix

DO II = 1,4
DO JJ = 1,4
T(II,JJ) = TIKAT(II,JJ)

ENDDO
ENDDO
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C Manipulator joint angles

THI = DI + TETl(J)
TH2 = DT2 + TET21J)
TR3 = DT3 + TET3(J)
TH4 = DT4 + TET4(J)
TH5 = DT5 + TET5(J)
F16 = DF6 + TET6(j)

C Compute the T matrices, TI thru T6:

CALL T3XY: (Th',YW,Z ,TO)

CALL TRANSFORM ( AlI, AAI, DDl, THi, BLI, Ti
CALL TRANSFORM ( AL2, AA2, DD2, TH2, BL2, T2)
CALL TRANSFORM ( AL3, AA3, DD3, TH3, BL3, T3
CALL TRANSFORM ( AL4, AA4, DD4, TH4, BL4, T4
CALL TRAISFORM AL5, AA5, DD5, TEb, BL5, T5

CALL T3RPY ( F16, TH6, S16, TRPY
CALL T3XY: ( PXE, PY6, PZ6, TXY:
CALL MTMULC (T6, TRPY, TXY3 )

C Compute the overall transformation, T:

CALL KATMU U T, TO
CALL K WTHLA T, TI
CALL MATKULA ( T, T2
CALL MATNULA ( , T3
CALL NATMULA ( T 14
CALL MATMUL (T, T5
CALL ATMULk ( T, T6

C Calculate the 'nominal' wire length based on current parameter values

CALL LENGTH(OTTPOP,T)

C Calculate the function F

F(J)=DABS(OTTPOP-OTX(J))

C End the do-loop for counter J

ENDDO

C Compute RMS error

SUNSQ-O.ODO
DO J=l,NOBS

SUSQ=SUMSQF(J)*F(J)
ENDDO

176



RMS=DSQRT (SUMSQ 'MOBS)
WRITE(6,*)RRS
RETURN
END

C

C This subroutine calculates the length of wire from the base fixture to
C the manipulator endpoint fixture based on the current manipulator
C endpoint pose (T6 =T). This subroutine uses a renamed version of IHSL
C routine ZXSSQ (ZXSSQl) to minimize the sum (component by component) of
C unit vectors describing the tangent points for both upper and lower
C fixtures. Subroutine ZXSSQl utilizes subroutine MINLENTH to evaluate
C the 'F" functions.

SUBROUTINE LENGTH(OTTPO , T)
REAL*8 T6(4,4),T6IN,(4,4),TI4,41
REAL*8 EPSN,DELTA1N,PAWM 4),XN(4 ,SSQN,FN(6),XJACINI6,4)
REAL*B WORKN(42),XJTJN(1O),XUV4)
INTEGER NNNNN NSIGN,AXFNN.IO>TN,IXJAIN,INFEPN,IEP.N
RE.AL*8 PI,R,X,Y,Z,OOP,XLUV(4),XtW-;(4),XO,YO,P6(4 ,XOYO,
RD.L*8 X6Y6,20,OTTPOP,OTSCAkL,OT,XU(4),TTP,TTPSCAL
REAL*8 ThETAUMTETAL
COMMON'LEN, PI,R,T6,THETAkU,TEETAL,TTP

EXTERNAL KINLENTE
DO I=1,4

DO J=1,4
T6(I,J)=TfI,J'

ENDDCO
ENDDO
M1N=6
NfN=4
NSIGN=4
EPSN=O.ODD
DELTAN=O.ODO
KAXFNN=1000
IXJACN=6
IOPTrN=1
PI=4.ODO*DATAN111.ODOi
R=12.70DO

X=T6(1,4)
Y=T6(2,4)
Z=T613,4)
OOP-DSQRT( X**2+Y**2±Z**2)
XLUV (1 )=X /OOP
XLUV(2)=Y/OOP
XLUV(3)=Z lOOP

* XLUTV(4)=l.ODO
DO I=1,4
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DO J=1,4
T61N*;(I,J)=O.ODC

DO I=1,3
DO J=1,3
T61N7.(I,J)=T6(J,I)

ENDDO
T61N'.(1,4)=T6IFN7(1,4)-T6 1,4.)*T6(l,l)
T61NW(2,4)=T6IN'v'(2,41-T6(I,4)*T6(I,2)
T61)r;(3,4)=T6INr.(3,4)-T6(I,4)*T6(l,3)

T61?r,'4,4) =1. ODO
XUE\'(1)=X-XLU7,l,1)
XU17P2 ,Y-XL7J 2)
XUnT( 3) =Z-XLU; (3)
XUt:Pi 4)=1.OD0
DO I=1,4

XU17i' I) =0. O(
DO J=1,4

EXDXV I) X U,( i 6I ,( , i ( UP J
ENDDO

XNt 1)=XLtl)*
XNW2)=XLT;(2)*P

C Call renamed version of lXSSQ

CALL ZXSS01(MINLENH,NN,NNN,NSIGN,EPSN,DELTAN,MAXFNN,IOPTN,
& PARIN,SSQN,FN,XJACN,IXJACN,XJTJN,WORKN,INFERNi,IERN,

C Calculate wire lenath

O TTPOP: ( THTAL4.THETA ) *RtTTF

RETURN
ED

C***********************************

SUBROUTINE KIN LENTH(II,MNI,NN,FN)

INTEGER MN,NNM
RMA*8 XN(4),FN(6),ERROR,AKABBB
REAL*8 PI,R,X,Y,Zk,OOP,XLUV(4),XUUrv(4),XO,YO,PE(4),XOYO
REAkL*8 X6Y6,ZO,OPTPSCAL,OPT,OTSCAL,OT,XC(4),TrP,TTPSCAL
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RUI-k*8 T6)4,4),P6P(4l,THETAU,TEETA.L,MAGiUL,MkGUU 1UXO'V

RF.AL*S CYO,CZO,X'P(4) ,UX6,LY6,C6,UXT,UIYT,CCZT,"OP

COMON 'LBN PI,R,T6,THEE:AU,TEETTTP

S XO=XNl)
YO=MN2)
P6(1)=)Ii(3
Pb(2J=XN 4j

P6PC2)=P62'1

XOYO=DSOOTM X**2tYO**21
X6Y6=DSQPT P6(1 )**2-P6 2 )*i2)
AA=2.ODO*R*X6Y6-P6(1 )**2-P6) **2
BBB-2 .QDO*R*XOYO.XO**2-YO**2
IF (W). .LT. O.OLD) THEN

P6 3 PR
ELSE
P6(3)=DSQPTALU!

EN-D:F
IF (BBB .LT. O.0D0) THrN

Z OCR
ELSE
ZOrDSQRT(BBB)

EN'DI F
TBETAL'rDASIN(P6f3) R)
TBETKL=DASIN(0 OR)
P6P13) =X6Y6*DTANiP12. ODO-THETAD
ZOP=XOYO*DTA liI2.ODO-THETALi
KAGUL=DSQRTI XO**2. Yo**2-ZoP**2
MAGLDSQRT(P6Pt 1)**2+P6P(2)**2+P6P3 )**2)
UXO=XO W.GUL
UYO=YO 'MACEL
UZO=ZOP MACEL

C Transfort tangent vector in FE coordinates to FM coordinates

P6P(4)=1.ODO
DO 1=1,4

XUP(I)=O.ODO
DO J=1,4

XUP(I)=XUP(I),T6(I,J)*P6P(J)
EKDDO

ENDDO

C Calculate upper tangent vector in FM coordinates

UX6=(XUP(1)-T6(1,4) ) !AGUU
UY6=(XUP2)-T6(2,4)liMA'CUU1
UZ6=(XMP3)-T6(3,4) )/MAGUU
P6(4 1l.ODO
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DO I=1,4
XU(I)=O.ODO
DO J=1,4

XU(I)=XU(I)+T6(I,J)*P6(J)
ENDDO

ENDDO
TTP-DSQRT( (XU(l)-XO)**2+(XU(2)-YO)**2+(XU(3)-ZO)**2)
UXT=(XU(l)-XO)/TTP
UYT=(XU(2)-YO)/TTP
UZT=(XL'(3)-ZO)/TTP

C Calculate sinisizing functions

FN( l)=UXT-UXO
FN(2)=UYT-UYO
FN( 3)=UZT-EJZO
FN( 4)=UXT+UX6
FN(5)=UYT+UY6
FN(6)=UZT+UZ6

C Calculate residual

ERROR =O.ODO
DO I=1,6

ERROR=ERROR + FN(I)**2
ENDDO
WRITE(6,*)ERROR

RETURN
END
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APPENDIX F

C

PROGRAM WERIFY

C This program generates the six-dof pose error for the PUMA manipulator.
C It contains the identified calibration parameters and the exact parameter.
C It uses a data file of verification joint angle sets POSEVER.DAT, and the
C file RESULT.DAT from the proqrau 1D6.

INTEGER I, J, K, NPOSES, N
REAL*8 DANGLE, DLENTH
REAL*8 D'(5),DD(5),AA(5),AL(5),BL(5),MEA.S(6)
RF.AL*8 EDT(5),EDD(5),EAA(5),EAL(5),EBL(5),EMEAS(6)
REAL*8 EDF6,EFI6,ETh6,ESI6,EPX6,EPY6,EPZL6
pFJJL*8 THETA(1OO0,6), TDELTA(4,4)
REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL*8 TIMAT(4,4), T(4,4), ET(4,4)

*REAL*8 DTl, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 WA, AA2, AD, AA4, AA5
REAL*8 ALl, AL2, AD, At4, AL5
REAL*8 BUi, BL2, BLU, BU4, BL5
REAL*8 DF6, F16, TH6, S16, PX6, PY6, PZ6
REA.L*8 KW, YW, ZW
COMMON TIMAT,THETA

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAT/l,O,O,O,O,l,O,O,0,O,l,O,,,,1/

C Open data file

OPEN (9, NANE='POSEVER.DAT' ,STATUS='OLD')
OPEN (10, NANE='INPUT.DAT', STATUS='OLD')
OPEN (11, NKE='RESULT.DAT', STATUS='OLD')

C Read input parameters

READ (10,')
READ (10,') NEAS(l),NEAS(2),MEAS(3),MEAS(4),MEAS(5),NEAS(6)
READ (10,') DT1,DDl,AA1,AL1,BLl
READ (10,') DT2,DD2,AA2,AL2,BL2
READ (10,') DT3,DD3,AA3,AL3,BL3
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READ (1O,*) DT4,DD4,AA4,AL4,BL4
READ (1O,*) DT5,DD5,A.A5,AL5,BL5
READ (1O,*
READ (1O,*) DF6,TH6,SI6,PX6,PY6,PZ6
READ (lO,*)
READ (1O,*) NOBS,R,DMIGLE,DLEN'rH,MAGNX,MAGNL

CLOSE (10)

C Read in joint angle sets for verification poses

MWOES=NOBS

DO Ikl,NPOSES
REkD( 9,*)

READ(9,*)THETA(I,l) ,THETA(I,2) ,THETA(I,3),THETA(I,4),
& THETA(I,5),THEIA(I,6)

EKDDO
CLOSE(9)

C Set exact link parameters for the manipulator:

DO I=2,5
DT(I)DT(I)+DANGLE

ENDDO

NEAS( 1) :EAS( 1)
KEAS(2)=KEAS(2)
HEAS(3)=MEAS(3)
MEAS(4)zKEAS( 4)+DLEKTH
MEAS(5)=MEAS(5)+DLENTH
NEAS(6)=4EAS(6)+DLENTH

AL(1)AL+DM4GLE
kL( 2) 44L2+DANGLE
AL(3)AL3+DANGLE
AL( 4)=AL4+DANGLE
AL(5)=AL5+DANGLE

AA(I) = W + DLEIT
AA(2) = AA2 + DLENTH
AA(3) = AD3 + DLENTR
AA(4) =AM4 + DLEN'r
AA(5) = AA5 + DLENnh

DD(1) = DDl
DD(2) = DD2
DD(3) = DD3 + DLENTB
DD(4) = DD4 + DLENTX
DD(5) = DD5 + DLENTE
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BL(1) =BLi
BL(2) =BL2 + DANGLE
BL(3) =BL3
BL(4) =BL4
BL(5) =BL4

DF6 = DF6 + DANGLE
TH6 =TH6
S16 =S16
PX6 =PX6 + DLENTH
PY6 =PY6
P26 =PZ6 + DLENTE

C Read in and set up estimated parameter table

RWA(ll,*)
READ( 11,*)
READ(ll,*) E.EAS(1),EH EAS (2),EMEAS(3)

DO I1,5
READ( 11,*)
READ( 11,*)
READ (ll,*) EDT(I),EDD(I),EAA(I),EAL(I),EBL(I)

ENDDO

READ(11l,*)
READ(ll,*)
READ(ll,*) EDF6,ETH6,ESI6,EPX6,EPY6,EP746

C Main loop through UPOSES joint angle sets

DO K=1,NPOSES

CALL FKS (K,KEAS,DT,AL,AA,DD,BL,F16,TH6,SI6,PX6,PY6,PZ6,T)
CALL FKS (K, WAS, EDTr, EL, EAA, EDD, BL, EF16, ETH6, ES16, EPX6,

& EPY6,EPZ6,ET)

C Compute the differential tool matrix

CALL MATSUB(TDELTA,T,ET)

c Compute the pose errors

POSERR=SQRT(TDELTA(,4)**2+TDELTA(2,4)**2+TDELTA(3,4)**2)
ORERRITDELTA(3,2)-TDELTA(2,3) )/2
ORERR2=(TDELTA(l,3)-TDELTA(3,l) )/2
ORERR3=(TDELTA(2,1)-TDELTA(1,2) )/2
ORERR=SQRT(ORERR1**2+ORERR2**2+ORERR3**2)

c Update total error counts
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POSTERR=(POSERR+(K-l )*POSTERR) 1K

ORTERR=(ORERR+(K-l )*ORTERR) 1K

c End of main loop

flIDDO

WRITE(6,*) 'Position error, orientation error'
WRITE(6,*) POSTERR,ORTERR
END

C ********************************

SUBROUTINE FKS (N,KEAS,DT,AL,AA,DD,BL,DF6,TR6,SI6,

& PX6,PY6,PZ6,T)

REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REXL*8 TIMAT(4,4), T(4,4), dt(5),al(5),aa(5),dd(5),bl(5)
REAL*8 THETA(lOOO,6),ANG(5),MEAS(6)

COHMM TIMAT,THETA

C Initialize the T matrix to an I matrix:

DO J=1,4
DO K=1,4
T(J,K) =TIMAT(J,K)

EJIDDO
ENDDO

C Set up the joint angles

DO I1,5
ANG(I)=THETA(N,I)+DT(I)

EJIDDO

F16=THETA(N,6)+DF6

C Compute the T matrices, Ti thru T6:

CALL T3RPY (NEA(1),MEAS(2),KEAS(3),TO)
CALL T31YZ (NEA(4),KEAS(5),NEAS(6),TO)
CALL NATHULC (TO,TRPY,TXYZ)

CALL TRANSFORM (AL(l),AA(l),DD(l),AIIG(l),BL(l),T1)
CALL TRANSFORM (AL(2),AA(2),DD(2),ANG(2),BL(2),Tl)
CALL TRANSFORM (AL(3),AA(3),DO(3),ANG(3),BL(3),Tl)
CALL TRANSFORM (AL(4),AA(4),DD(4),ANG(4),BL(4),T1)
CALL TRANSFORM (AL(5),AA(5),DD(5J,ANG(5),BL(5),Tl)
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CALL T3RPY (F16,TH6,SI6,TRPY
CALL T3XYZ (PX6,PY6,PZ6,TXYZ
CALL MATNULC (T6,TRPY,TXYZ)

C Cospute the overall transforuation, T:

CALL MATMULA T, TO
CALL HATKULA T, TI)
CALL MATMULA T, T2
CALL NATMULA T, T3
CALL KATMULA T, T4
CALL KATMULA T, T5
CALL ATMULA. T, T6

RETURN
END

C *************t**1**************************************************
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APPENDIX G

Two of the more important aspects in robot calibration are

precise measurements and maximum joint excursions during data

collection. An instrument referred to as a linear slide is

capable of displacement measurements accurate to 0.01 mm.

However, restricting the end effector to linear travel can

severely limit joint variation for one or more manipulator

joints. In fact, there are a number of configurations in which

one joint may not vary at all. The purpose of this project

then is to establish a position and orientation of the slide

which will maximize joint excursion for all six joints. The

project will require a dual use of the ADS program as is

described below.

A number of methods exist for developing an analytical

approach to the forward kinematic solution for a manipulator

(ie given a set of joint angles, what is the position and

orientation (pose) of the end effector). However, an

analytical solution to the inverse kinematics is much more

difficult or impossible to develop. Therefore, the first

application of ADS will be to solve this nonlinear problem in

the following manner. The design variables will be the 6 joint

angles. The design variables are bounded by the physical

bounds on their rotations and additional restrictions to limit

the robot to one "arm configuration". The design variables are
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used to produce a forward kinematic solution which is then

compared to the "desired" pose. The goal then is to minimize

the error between the "desired" and calculated poses. The pose

information is in the form of a four by four homogeneous

transformation matrix which is calculated in the following

manner. A coordinate frame is assigned to each manipulator

link in a standardized method. Due to two geometric

constraints, 4 parameters are required to transform from link

to link. These parameters include two rotations of which one

is the rotary joint angle and the other is a twist angle, and

two translations which are essentially the link length and an

offset distance. Using a standardized approach, the

transformation takes the following form:

a1 b1 C1 x

a2 b2 c2 Y

a3 b3 c 3 Z
0 001

=f(ai , d1 ,1 i, a j)

where the a,, b, and c, entries are direction cosines and x, y,

and z entries are the position with respect to the i-1

coordinate frame.

As noted, the transformation is a function of the four

parameters and in this application the nominal values are used

for the twist angle and the translations. The rotary joint

angle is the variable for each transformation matrix. If the
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frame to frame transformation matrices are multiplied in the

following manner, then the manipulator pose (ie. the position

and orientation of the manipulator end effector with respect

to a "world" coordinate frame will be given by the T6 matrix:

0 W o 12 T3 4 5 T6T 6 TTTT T3 T4 T

To compute the inverse solution, a desired pose matrix is

formed which is facilitated in this application by orientating

the "world" coordinate frame with the axis of the slide and at

its zero position. The design variables (the six joint angles)

are given an initial value which are used to compute a forward

solution. The difference between the computed T matrix and

desired T matrix are calculated term by term. Then, the

objective function is formed as the sum of the squares of the

element by element differences. Note that if a solution exists

(ie. reachable by the manipulator), the objective function

will be zero (or at least "small"). This objective function

value will then be used as a constraint in the second

application of the ADS program to ensure the slide is

"reachable" by the robot. The following is a mathematical

statement of the problem.
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First application of ADS:

Design variables:

02

64

Minimize:

F i,j=1,2,3,4

where

j Id2,j-c,, I

and d,,, and c,,, are the i,jth entries of the "desired" and

calculated transformation matrices.

In the second application of the ADS program, the design

variables are the x,y and z position of the end of the slide

as well as two orientation angles theta and phi which are

azimuth and elevation angles. The end of the slide must lie

outside a circle of radius of 150 mm from the joint one axis

of rotation and this becomes one of the nonlinear inequality

constraints. The inverse solution for six poses along the
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slide will be computed as described above which will serve two

purposes. As stated earlier, it will constrain the problem

within the "reachable" range of the manipulator. This will

make up six nonlinear inequality constraints. Additionally,

the inverse solution provides six sets of joint angles for one

slide position and orientation. The maximum joint excursion

for each joint is then determined from this information. The

goal is to maximize the excursion of all six joint angles.

Therefore, objective function will be to minimize the negative

value of joint one range over slide travel. The additional

five joint excursion ranges are compared to joint one's range

and these form 5 additional linear inequality constraints.

Additionally, the maximum displacement of the slide zero point

was placed at 1000 mm from the base frame of the robot and

this made up the thirteenth constraint.

M a t h e m a t i c a 1 1 y s t a t e d:

Second application of ADS:

Design variables:

x

y

6
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Minimize:

F(Z- = -AS0

where delta theta is the maximum range of joint excursion for

the six positions along the slide

Subject to:

91 = A01-A02  0
g2 = A81-A83 0
g 3 = AO-AO4  0
gAO1-Aes !0

g5 = A01-Ao6  o
6= F1- 0.01 0

g 7 F2 - 0.01 0
9e F3 - 0.01 0
9 F4 - 0.01 0

g10 = F5- 0.01 0
g = F6 - 0.01 s 0

9 Vx 2- Y2 -150.0
g12 

=  150.0

13 =/x 2 +y2 +zY2 -1500:0
1500

where F, is the value of the objective function for each of

the six positions along the slide as calculated in the first

application of ADS (inverse kinematic solution) which will be

referred to as the "inner loop" of the program.

The first application of ADS was tested independently.

After considerable testing, it was found that the following

combination of methodology and parameter settings performed

"best".
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istrat 0

iopt 3

ioned 3

dabobj 0.001

dabobm 0.0001

dabstr 0.0001

fdch 0.0001

fdchm 0.00001

itmax 60

scaling off

The results of these tests were compared to results

obtained from a well tested IMSL routine which was unsuitable

for implementation within the "inner" loop of the main program

due to the inability to bound the joint angles and obtain an

objective function value when the endpoint was not

"reachable". The chosen method consistently converged with an

accuracy within 3 digits of the IMSL routine. The major

drawback was the average of 200 function evaluations required.

However, accuracy and precision were crucial so the large

number of function calls was a necessary tradeoff.

With the first ADS application developed and working, this

program was then implemented as a subroutine within the second

application of ADS. This program war tested using the

recommended methods of the ADS manual and additionally with
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one dimensional search methods 2 and 6. No matter what

strategy or optimizer chosen, ioned values of 2 and 6 always

failed to converge (there is no obvious reason for this other

than the non-linearity of the problem). Additionally,

strategies 3, 6 and 7 failed in all configurations attempted

(ie parameter setting, optimizer, and one dimensional search

variations). Of the variations tested that converged, the

following combination of methodology and parameter settings

worked "best".

istrat = 9
iopt 5
ioned = 7

scaling off
dabobj = 0.001
dabobm = 0,0001
dabstr = 0.0001

"Best" in this setting was determined by convergence and

number of function calls. This best method consistently

converged in the fewest number of function calls. However,

even though this is the fastest method, the program still

required as much as 15-20 minutes of run-time on a VAX 3100

station (30 minutes or longer on the older workstations). As

expected (due to the nonlinearity of the problem), there are

apparently a number of local minima. Several starting

positions were chosen and tested. Printouts of the results for

several initial values are enclosed. The following lists the

optimum of the local minima found. From the geometry of the

problem this result is probably "close" to the global minimum
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and was a significant improvement from the initial design

values and the design used in the actual experiment.

One improvement to the program which significantly

improved convergence and reduced run-time was a seeding method

used for the inner loop. A reasonable set of initial joint

angles was chosen prior to the first pass through the

subroutine. The joint angles calculated for the zero position

on the slide were then used for initial values for calculating

the joint angles of the second position. This process was

repeated for each additional measurement position. After the

main program design variables are varied, the initial value of

the joint angles are set to the previously calculated joint

angles for the previous slide zero position before calling the

subroutine.

Additional testing of both parameter settings and initial

values should be performed to both ensure that the program

performs "optimally" and to search for the global minimum.

However, the results at this stage are quite satisfactory.
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RESULTS

A9 1 = 42.8

AG 2 = 46.6
A@3 = 96.8
A6 4 = 80.1.
Ae5 = 42.8
AeE = 45.7

X = 77.9 mm
y = -431 mm
z = 248 mm
o = 1930

= 20.40

x= -200 mS
0= -200 mm

z o = 400 mm
00 = 1350

= 450

FUNCTION EVALUATIONS FOR MAIN LOOP: 120

FUNCTION EVALUATIONS PER INNER LOOP ITERATION: AVERAGE OF 200.
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